Subsurface Transport of Dissolved Humic Substances and Associated Contaminants

Author(s):  
John F. McCarthy
2004 ◽  
Vol 50 (5) ◽  
pp. 277-283 ◽  
Author(s):  
R. Vinken ◽  
A. Höllrigl-Rosta ◽  
B. Schmidt ◽  
A. Schäffer ◽  
P.F.-X. Corvini

Humic substances are important environmental components since they represent a very large part of organic compounds on earth. According to many reports, dissolved humic substances are a determinant parameter for the bioavailability of xenobiotic compounds. For the present bioavailability studies, two kinds of dissolved humic substances, a commercially available humic acid and fulvic acids isolated from peat were used. As the relevant xenobiotic, a defined branched nonylphenol isomer, 4(3′,5′-dimethyl-3′-heptyl)-phenol (p353NP) was synthesised according to Friedel-Crafts alkylation. Equilibrium dialysis studies were implemented in order to investigate the association between 14C-labelled p353NP and dissolved humic substances. The biodegradability in the presence of dissolved humic substances was examined in experiments with the nonylphenol degrading bacterium strain Sphingomonas TTNP3 and with p353NP as sole carbon source. The results showed that p353NP-humic acid associates were formed in high amounts, whereas no adducts with fulvic acids occurred. In the degradation studies with Sphingomonas TTNP3, no effects of dissolved humic substances on the bioavailability of p353NP could be observed. It was assumed that the association between nonylphenol and humic acids occurs rapidly and is reversible. Thus, the formation of "labile" complexes did not influence biodegradation rates, which were quite low.


2007 ◽  
Vol 4 (5) ◽  
pp. 323 ◽  
Author(s):  
Amiel Boullemant ◽  
Jean-Pierre Gagné ◽  
Claude Fortin ◽  
Peter G. C. Campbell

Environmental context. Lipophilic metal complexes, because they can readily cross biological membranes, are especially bioavailable. However, in natural waters these complexes do not necessarily exist in a free state, i.e. they may bind to the organic matter (humic substances) that is present in natural waters. It follows that the in situ bioavailability of lipophilic metal complexes will tend to be less than that measured in simple laboratory experiments. Abstract. The ability of dissolved humic substances (HS: fulvic and humic acids) to complex cationic metals is well known, but their interactions with neutral lipophilic metal complexes are little understood. In the present study, we have examined the behaviour of two such complexes ( Cd  L 2 0 -->Cd L02: L = DDC = diethyldithiocarbamate, or L = XANT = ethylxanthate) in the presence of Suwannee River Humic and Fulvic acids. Interactions between the neutral complexes and the humic substances were assessed by excitation-emission matrix (EEM) fluorescence spectroscopy at pH 5.5 and 7.0, and by equilibrium dialysis experiments (500 Da cut-off). The EEM measurements were carried out by titrating the humic substances (6.5 mg C L–1) with Cd, in the absence or presence of ligand L (1 µM DDC or 100 µM XANT). Given the very high stability constants for the complexation of cadmium by DDC and XANT and the excess ligand concentration, virtually all (>96%) of the Cd added to the L + HS matrix was calculated to be present as the neutral Cd L 2 0 -->CdL20 complex over the entire pH range tested. For both humic substances, addition of DDC or XANT alone led to shifts in the fluorescence spectra at both pH values, indicating that the DDC– and XANT– anions likely interact by electrostatic or hydrogen bonding within the humic molecules. The subsequent addition of Cd to these L + HS systems resulted in a disproportionately large enhancement of the fluorescence intensities of individual EEM peaks, this fluorescence enhancement being only slightly decreased by the shift from pH 7.0 to 5.5. We interpret this enhancement as evidence that the two neutral complexes associate with the humic substances, presumably by forming ternary complexes (Ln-Cd-HS). Hydrophobic interactions between the humic substances and the neutral complexes may also contribute, but to a lesser extent, as demonstrated by partitioning calculations based on the lipophilicity of the neutral complexes. The association of the neutral complexes with Suwannee River Humic Acid was confirmed by dialysis experiments.


Sign in / Sign up

Export Citation Format

Share Document