Simple Diffusion Well for Measuring Soil Specific Diffusion Impedance and Soil Air Composition1

1954 ◽  
Vol 18 (3) ◽  
pp. 229 ◽  
Author(s):  
C. H. M. van Bavel
2021 ◽  
Vol 7 (5) ◽  
pp. 348
Author(s):  
Kristina Habschied ◽  
Vinko Krstanović ◽  
Zvonimir Zdunić ◽  
Jurislav Babić ◽  
Krešimir Mastanjević ◽  
...  

Contamination of crops with phytopathogenic genera such as Fusarium, Aspergillus, Alternaria, and Penicillium usually results in mycotoxins in the stored crops or the final products (bread, beer, etc.). To reduce the damage and suppress the fungal growth, it is common to add antifungal substances during growth in the field or storage. Many of these antifungal substances are also harmful to human health and the reduction of their concentration would be of immense importance to food safety. Many eminent researchers are seeking a way to reduce the use of synthetic antifungal compounds and to implement more eco-friendly and healthier bioweapons against fungal proliferation and mycotoxin synthesis. This paper aims to address the recent advances in the effectiveness of biological antifungal compounds application against the aforementioned fungal genera and their species to enhance the protection of ecological and environmental systems involved in crop growing (water, soil, air) and to reduce fungicide contamination of food derived from these commodities.


1976 ◽  
Vol 230 (4) ◽  
pp. 1101-1107 ◽  
Author(s):  
R Spector

Total thiamine (free thiamine and thiamine phosphates) transport into the cerebrospinal fluid (CSF), brain, and choroid plexus and out of the CSF was measured in rabbits. In vivo, total thiamine transport into CSF, choroid plexus, and brain was saturable. At the normal plasma total thiamine concentration, less than 5% of total thiamine entry into CSF, choroid plexus, and brain was by simple diffusion. The relative turnovers of total thiamine in choroid plexus, whole brain, and CSF were 5, 2, and 14% per h, respectively, when measured by the penetration of 35S-labeled thiamine injected into blood. From the CSF, clearance of [35S]thiamine relative to mannitol was not saturable after the intraventricular injection of various concentrations of thiamine. However, a portion of the [35S]thiamine cleared from the CSF entered brain by a saturable mechanism. In vitro, choroid plexuses, isolated from rabbits and incubated in artificial CSF, accumulated [35S]thiamine against a concentration gradient by an active saturable process that did not depend on pyrophosphorylation of the [35S]thiamine. The [35S]thiamine accumulated within the choroid plexus in vitro was readily released. These results were interpreted as showing that the entry of total thiamine into the brain and CSF from blood is regulated by a saturable transport system, and that the locus of this system may be, in part, in the choroid plexus.


Soil Science ◽  
1977 ◽  
Vol 124 (3) ◽  
pp. 135-139 ◽  
Author(s):  
D. R. LINDEN ◽  
R. M. DIXON ◽  
J. C GUITJENS
Keyword(s):  

2014 ◽  
Vol 160 (1-3) ◽  
pp. 222-225 ◽  
Author(s):  
M. M llerova ◽  
K. Holy ◽  
M. Bulko

1971 ◽  
Vol 49 (1) ◽  
pp. 74-77 ◽  
Author(s):  
M. Cowie ◽  
Harry Watts

The binary gaseous diffusion coefficients of air with methane, methyl chloride, methylene chloride, chloroform, and carbon tetrachloride at 298.2 °K and 1 atm have been determined. A simple diffusion cell was used, in which concentration changes of the diffusing gas were followed by infrared spectrophotometry.


Sign in / Sign up

Export Citation Format

Share Document