Laboratory Apparatus to Apply and Sample Anhydrous Ammonia in Bands

1986 ◽  
Vol 50 (4) ◽  
pp. 932-936 ◽  
Author(s):  
R. C. Izaurralde ◽  
D. E. Kissel ◽  
C. W. Swallow
2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


1986 ◽  
Vol 66 (3) ◽  
pp. 743-753 ◽  
Author(s):  
A. S. ATWAL ◽  
L. C. HESLOP ◽  
K. LIEVERS

Two experiments were conducted in sequence to determine the effectiveness of anhydrous ammonia (AA) as a preservative of alfalfa hay stored as large round bales (LRB). In the the first experiment application of 3% AA (wt/wt) to alfalfa hay baled at about 23% moisture-content (MC) increased the temperature markedly above the control treatment and resulted in a significantly (P < 0.05) higher acid-detergent-insoluble nitrogen and acid-detergent lignin. In the second experiment application of about 1% AA slowly (over 48 h) to LRB of alfalfa hay packaged at about 30% and > 35% MC, significantly (P < 0.05) reduced the cumulative degree-days above all reference points from 35 to 65 °C. Ammoniation completely eliminated dry matter losses in storage which were highest (8.3%) for 33% MC control hay. High moisture control hay (33% MC) suffered severe heat damage with 33% of total N being in the acid-detergent-insoluble fraction as compared to less than 10% for medium-moisture (26% MC) control and even lower values for ammoniated hay. Digestibility of crude protein and energy was significantly (P < 0.05) improved by ammoniation of medium-moisture (about 30% in-to-storage) alfalfa hay. When the ammonia-treated hay was uncovered in spring, coarsely ground and stored in a hay wagon the high-moisture-ammoniated hay (> 35% MC) became moldy within 4 wk, even when the ambient temperature was about 6 °C, whereas medium-moisture-ammoniated hay (about 30% MC) showed some deterioration after 7 wk as the ambient temperature increased to about 12 °C. Key words: Ammonia, alfalfa hay, digestibility, heat damage, high-moisture hay, large bales


Sign in / Sign up

Export Citation Format

Share Document