Transformation and Losses of Applied Nitrogen-15 Labeled Ammonium in a Flooded Organic Soil

1989 ◽  
Vol 53 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Michael L. Meyer ◽  
Paul R. Bloom ◽  
John Grava
HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1073D-1073
Author(s):  
Sean Westerveld ◽  
Alan McKeown ◽  
Mary Ruth McDonald

In previous work with carrots (Daucus carota L.), little effect of nitrogen could be found on yield, but low nitrogen increased foliar disease. To determine if residual soil nitrate supplies sufficient nitrogen for carrots, plots were located on the same site for 3 years. Two sites were selected, one sand (pH 8.1, 2.6% OM), one organic (pH 6.0, 75% OM). Treatments consisted of 0%, 50%, 100%, 150%, and 200% of recommended levels (kg·ha-1) for organic (60) and mineral soils (110), plots were spilt in half with one fertilized every year, one in 2002 and were arranged in a split plot design with four replications. Foliar and soil samples were taken for nitrate analysis plus levels of Alternariadauci and Cercospora carotae foliar blight were recorded each year. Applied nitrogen had no effect on yield on muck soils. Over 3 years on mineral soils, total yield ranged from 36 to 48 t·ha-1 with no applied N. On mineral soils, yield was maximized at (kg·ha-1) 110, over 165, and 55-165 in 2002, 2003, and 2004, respectively. Stands on mineral soils were reduced at or above recommended rates in 2004. It is possible that carrots obtained considerable nitrogen perhaps deep in the soil profile. As in previous studies, applied nitrogen reduced foliar blights. Thus, nitrogen application is required for pest management purposes even if there is almost sufficient residual nitrogen for yield.


2017 ◽  
Vol 4 (2) ◽  
pp. 87-91
Author(s):  
Ekamaida Ekamaida

The soil fertility aspect is characterized by the good biological properties of the soil. One important element of the soil biological properties is the bacterial population present in it. This research was conducted in the laboratory of Microbiology University of Malikussaleh in the May until June 2016. This study aims to determine the number of bacterial populations in soil organic and inorganic so that can be used as an indicator to know the level of soil fertility. Data analysis was done by T-Test that is by comparing the mean of observation parameter to each soil sample. The sampling method used is a composite method, which combines 9 of soil samples taken from 9 sample points on the same plot diagonally both on organic soil and inorganic soil. The results showed the highest bacterial population was found in total organic soil cfu 180500000 and total inorganic soil cfu 62.500.000


Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Tellus ◽  
1978 ◽  
Vol 30 (5) ◽  
pp. 472-475 ◽  
Author(s):  
Hinrich L. Bohn
Keyword(s):  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 529a-529
Author(s):  
Rebecca L. Darnell ◽  
J.G. Williamson ◽  
T.A. Obreza

A high-density planting of three southern highbush cultivars was established in 1994 in southwest Florida to test the feasibility of a non-dormant blueberry production system. A non-dormant system involves continuous application of nitrogen throughout fall and winter, which enables the plants to avoid the normal dormancy cycle and the concomitant chilling requirement. Three nitrogen fertilizer rates and two organic soil amendments (muncipal solid waste compost and acidic peat) were evaluated for effects on maintaining plant growth in this system. In general, increasing N rates from 84 to 252 kg·ha–1 increased plant canopy volume, leaf retention, and rate of new vegetative budbreak. Plant height and volume were consistently greater for plants grown in the compost compared to the peat amendment, but there were no differences in leaf retention or vegetative budbreak between the two soil amendments. Flower bud density and fruit yield were increased in plants grown in the compost compared to the peat, while N rate had no effect on either. Plants in this non-dormant system have shown no deleterious growth effects, suggesting that establishing a blueberry planting in a warm winter climate is feasible under the described conditions.


1907 ◽  
Vol 85 (3) ◽  
pp. 541-545 ◽  
Author(s):  
A. R. Overman ◽  
M. A. Sanderson ◽  
R. M. Jones
Keyword(s):  

1957 ◽  
Vol 21 (5) ◽  
pp. 528-532 ◽  
Author(s):  
K. E. E. Johnson ◽  
J. F. Davis ◽  
E. J. Benne

Sign in / Sign up

Export Citation Format

Share Document