Can Cover Crop and Manure Maintain Soil Properties After Stover Removal from Irrigated No-Till Corn?

2014 ◽  
Vol 78 (4) ◽  
pp. 1368-1377 ◽  
Author(s):  
Humberto Blanco-Canqui ◽  
Richard B. Ferguson ◽  
Virginia L. Jin ◽  
Marty R. Schmer ◽  
Brian J. Wienhold ◽  
...  
Keyword(s):  
Author(s):  
Lindsey Anderson ◽  
Humberto Blanco‐Canqui ◽  
Mary E. Drewnoski ◽  
James C. MacDonald ◽  
Zachary Carlson ◽  
...  

Author(s):  
Khandakar R. Islam ◽  
Greg Roth ◽  
Mohammad A. Rahman ◽  
Nataliia O. Didenko ◽  
Randall C. Reeder
Keyword(s):  
Flue Gas ◽  

2021 ◽  
Author(s):  
Harry H. Schomberg ◽  
Dinku M. Endale ◽  
Kipling S. Balkcom ◽  
Randy L. Raper ◽  
Dwight H. Seman
Keyword(s):  

2014 ◽  
Vol 106 (4) ◽  
pp. 1193-1204 ◽  
Author(s):  
Caroline Halde ◽  
Robert H. Gulden ◽  
Martin H. Entz
Keyword(s):  

2004 ◽  
Vol 96 (6) ◽  
pp. 1651-1659 ◽  
Author(s):  
M. Díaz-Zorita ◽  
J. H. Grove ◽  
L. Murdock ◽  
J. Herbeck ◽  
E. Perfect

2001 ◽  
Vol 55 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Enrique V. Herrero ◽  
Jeffrey P. Mitchell ◽  
W. Thomas Lanini ◽  
Steven R. Temple ◽  
Eugene M. Miyao ◽  
...  

2022 ◽  
pp. 112-120
Author(s):  
Jeffrey P. Mitchell ◽  
Anil Shrestha ◽  
Lynn Epstein ◽  
Jeffery A. Dahlberg ◽  
Teamrat Ghezzehei ◽  
...  

To meet the requirements of California's Sustainable Groundwater Management Act, there is a critical need for crop production strategies with less reliance on irrigation from surface and groundwater sources. One strategy for improving agricultural water use efficiency is reducing tillage and maintaining residues on the soil surface. We evaluated high residue no-till versus standard tillage in the San Joaquin Valley with and without cover crops on the yields of two crops, garbanzo and sorghum, for 4 years. The no-till treatment had no primary or secondary tillage. Sorghum yields were similar in no-till and standard tillage systems while no-till garbanzo yields matched or exceeded those of standard tillage, depending on the year. Cover crops had no effect on crop yields. Soil cover was highest under the no-till with cover crop system, averaging 97% versus 5% for the standard tillage without cover crop system. Our results suggest that garbanzos and sorghum can be grown under no-till practices in the San Joaquin Valley without loss of yield.


2018 ◽  
Vol 35 (3) ◽  
pp. 227-233 ◽  
Author(s):  
Natalie P Lounsbury ◽  
Nicholas D Warren ◽  
Seamus D Wolfe ◽  
Richard G Smith

AbstractHigh-residue cover crops can facilitate organic no-till vegetable production when cover crop biomass production is sufficient to suppress weeds (>8000 kg ha−1), and cash crop growth is not limited by soil temperature, nutrient availability, or cover crop regrowth. In cool climates, however, both cover crop biomass production and soil temperature can be limiting for organic no-till. In addition, successful termination of cover crops can be a challenge, particularly when cover crops are grown as mixtures. We tested whether reusable plastic tarps, an increasingly popular tool for small-scale vegetable farmers, could be used to augment organic no-till cover crop termination and weed suppression. We no-till transplanted cabbage into a winter rye (Secale cereale L.)-hairy vetch (Vicia villosa Roth) cover crop mulch that was terminated with either a roller-crimper alone or a roller-crimper plus black or clear tarps. Tarps were applied for durations of 2, 4 and 5 weeks. Across tarp durations, black tarps increased the mean cabbage head weight by 58% compared with the no tarp treatment. This was likely due to a combination of improved weed suppression and nutrient availability. Although soil nutrients and biological activity were not directly measured, remaining cover crop mulch in the black tarp treatments was reduced by more than 1100 kg ha−1 when tarps were removed compared with clear and no tarp treatments. We interpret this as an indirect measurement of biological activity perhaps accelerated by lower daily soil temperature fluctuations and more constant volumetric water content under black tarps. The edges of both tarp types were held down, rather than buried, but moisture losses from the clear tarps were greater and this may have affected the efficacy of clear tarps. Plastic tarps effectively killed the vetch cover crop, whereas it readily regrew in the crimped but uncovered plots. However, emergence of large and smooth crabgrass (Digitaria spp.) appeared to be enhanced in the clear tarp treatment. Although this experiment was limited to a single site-year in New Hampshire, it shows that use of black tarps can overcome some of the obstacles to implementing cover crop-based no-till vegetable productions in northern climates.


Sign in / Sign up

Export Citation Format

Share Document