The Effect of Water Potential on Decomposition Processes in Soils

Author(s):  
L. E. Sommers ◽  
C. M. Gilmour ◽  
R. E. Wildung ◽  
S. M. Beck
2019 ◽  
Vol 16 (6) ◽  
pp. 1187-1209 ◽  
Author(s):  
Teamrat A. Ghezzehei ◽  
Benjamin Sulman ◽  
Chelsea L. Arnold ◽  
Nathaniel A. Bogie ◽  
Asmeret Asefaw Berhe

Abstract. Soil water status is one of the most important environmental factors that control microbial activity and rate of soil organic matter (SOM) decomposition. Its effect can be partitioned into effect of water energy status (water potential) on cellular activity, effect of water volume on cellular motility, and aqueous diffusion of substrate and nutrients, as well as the effect of air content and gas-diffusion pathways on concentration of dissolved oxygen. However, moisture functions widely used in SOM decomposition models are often based on empirical functions rather than robust physical foundations that account for these disparate impacts of soil water. The contributions of soil water content and water potential vary from soil to soil according to the soil water characteristic (SWC), which in turn is strongly dependent on soil texture and structure. The overall goal of this study is to introduce a physically based modeling framework of aerobic microbial respiration that incorporates the role of SWC under arbitrary soil moisture status. The model was tested by comparing it with published datasets of SOM decomposition under laboratory conditions.


2017 ◽  
Vol 81 (3) ◽  
pp. 622-632 ◽  
Author(s):  
Q.J. Liu ◽  
R.R. Wells ◽  
S.M. Dabney ◽  
J.J. He

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 848E-848
Author(s):  
Tomasz Anisko ◽  
Orville M. Lindstrom

The effect of water stress on cold hardiness was examined in evergreen azaleas, `Coral Bell' (CB), `Hinodegiri' (HD), and `Red Ruffle' (RR). Plants were well-watered between 8 Aug. and 1 Nov. (wet) or were subjected to 3 weeks of reduced water supply starting on one of three dates, 1 Aug. (dry 1), 29 Aug. (dry 2), and 19 Sept. (dry 3). Cold hardiness of leaves and lower, middle, and upper stems was tested on 29 Aug., 19 Sept., 10 Oct., 1 Nov. By the end of each 3-week period, water potential of water stressed plants reached –1.5 to –1.8 MPa compared to around –0.8 MPa of well-watered plants. Reducing the water supply significantly increased cold hardiness of all tested plant parts in all cultivars regardless of timing of watering reduction, with two exceptions, CB middle stems on 29 Aug. and HD leaves on 19 Oct. Three weeks after rewatering cold hardiness of water-stressed plants did not differ significantly from well-watered plants, except for HD plants under dry three treatment, which continued to be 1.0 (middle stems) to 4.3 (upper stems) more cold hardy.


Sign in / Sign up

Export Citation Format

Share Document