Transient Analysis of Markovian Queue Model with Multi Stage Service

Author(s):  
Rachita Sethi
2021 ◽  
Author(s):  
Vitaly Virt ◽  
Vladimir Kosolapov ◽  
Vener Nagimov ◽  
Andrey Salamatin ◽  
Yulia Fesina ◽  
...  

Abstract Profitable development of hard-to-recover reserves often involves drilling of horizontal wells with multistage hydraulic fracturing to increase the oil recovery factor. Usually to monitor the fracture sweep efficiency, pressure transient analysis is used. However, in case of several fractures this method delivers only average hydrodynamic parameters of the well-fracture system. This paper illustrates the value of temperature logging data and demonstrates possibilities of the 3-D thermo-mechanical modelling in evaluating the differential efficiency of multi-stage hydraulic fracturing.


2009 ◽  
Vol 47 (4) ◽  
pp. 305-317 ◽  
Author(s):  
Douglas G. Woolford ◽  
David A. Stanford ◽  
Reginald J. Kulperger ◽  
Dennis Boychuk ◽  
B. Mike Wotton

2000 ◽  
Vol 6 (5) ◽  
pp. 439-460 ◽  
Author(s):  
R. B. Lenin ◽  
P. R. Parthasarathy

In this paper, we consider fluid queue models with infinite buffer capacity which receives and releases fluid at variable rates in such a way that the net input rate of fluid into the buffer (which is negative when fluid is flowing out of the buffer) is uniquely determined by the number of customers in anM/M/1/Nqueue model (that is, the fluid queue is driven by this Markovian queue) with constant arrival and service rates. We use some interesting identities of tridiagonal determinants to find analytically the eigenvalues of the underlying tridiagonal matrix and hence the distribution function of the buffer occupancy. For specific cases, we verify the results available in the literature.


2018 ◽  
Vol 20 (2) ◽  
pp. 281-300 ◽  
Author(s):  
Chi Zhang ◽  
Aaron C. Zecchin ◽  
Martin F. Lambert ◽  
Jinzhe Gong ◽  
Angus R. Simpson

Abstract Fault detection in water distribution systems is of critical importance for water authorities to maintain pipeline assets effectively. This paper develops an improved inverse transient analysis (ITA) method for the condition assessment of water transmission pipelines. For long transmission pipelines ITA approaches involve models using hundreds of discretized pipe reaches (therefore hundreds of model parameters). As such, these methods struggle to accurately and uniquely determine the many parameter values, despite achieving a very good fit between the model predictions and measured pressure responses. In order to improve the parameter estimation accuracy of ITA applied to these high dimensional problems, a multi-stage parameter-constraining ITA approach for pipeline condition assessment is proposed. The proposed algorithm involves the staged constraining of the parameter search-space to focus the inverse analysis on pipeline sections that have a higher likelihood of being in an anomalous state. The proposed method is verified by numerical simulations, where the results confirm that the parameters estimated by the proposed method are more accurate than the conventional ITA. The proposed method is also verified by a field case study. Results show that anomalies detected by the proposed methods are generally consistent with anomalies detected by ultrasonic measurement of pipe wall thickness.


Sign in / Sign up

Export Citation Format

Share Document