Individual Fracture Efficiency Monitoring in Horizontal Wells by Using a New 3d Fine-Grid Temperature Modelling

2021 ◽  
Author(s):  
Vitaly Virt ◽  
Vladimir Kosolapov ◽  
Vener Nagimov ◽  
Andrey Salamatin ◽  
Yulia Fesina ◽  
...  

Abstract Profitable development of hard-to-recover reserves often involves drilling of horizontal wells with multistage hydraulic fracturing to increase the oil recovery factor. Usually to monitor the fracture sweep efficiency, pressure transient analysis is used. However, in case of several fractures this method delivers only average hydrodynamic parameters of the well-fracture system. This paper illustrates the value of temperature logging data and demonstrates possibilities of the 3-D thermo-mechanical modelling in evaluating the differential efficiency of multi-stage hydraulic fracturing.

2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


2021 ◽  
Author(s):  
Azat Albertovich Gimazov ◽  
Ildar Shamilevich Bazyrov

Abstract The article describes a method for developing low-permeability reservoirs using horizontal wells with multi-stage hydraulic fracturing. The effectiveness of the new method lies in protecting the horizontal part of the production well by drilling it through a non-reservoir plastic reservoir adjacent directly to the target reservoir. The paper considers various implementations of the technology and estimates the increase in oil recovery factor for each of them based on the results of hydrodynamic modeling. The risks associated with the implementation of the technology are considered. Methods for their reduction are proposed.


2019 ◽  
Vol 16 (11) ◽  
pp. 4584-4588
Author(s):  
I. A. Pogrebnaya ◽  
S. V. Mikhailova

The work is devoted to identifying the most relevant geological and technical measures carried out in Severo-Ostrovnoe field from the period of its development to the present. Every year dozens of geotechnical jobs (GJ) are carried out at each oil field-works carried out at wells to regulate the development of fields and maintain target levels of oil production. Today, there are two production facilities in the development of the Severo-Ostrovnoe field: UV1a1 and BV5. With the help of geotechnical jobs, oil-producing enterprises ensure the fulfillment of project indicators of field development (Mikhailov, N.N., 1992. Residual Oil Saturation of Reservoirs Under Development. Moscow, Nedra. p.270; Good, N.S., 1970. Study of the Physical Properties of Porous Media. Moscow, Nedra. p.208). In total, during the development of the Severo-Ostrovnoe field, 76 measures were taken to intensify oil production and enhance oil recovery. 12 horizontal wells were drilled (HW with multistage fracking (MSF)), 46 hydraulic fracturing operations were performed, 12 hydraulic fracturing operations were performed at the time of withdrawal from drilling (HW with MSF), five sidetracks were cut; eight physic-chemical BHT at production wells; five optimization of well operation modes. The paper analyzes the performed geological and technical measures at the facilities: UV1a1∦BV5 of the Severo-Ostrovnoe field. Four types of geological and technical measures were investigated: hydraulic fracturing, drilling of sidetracks with hydraulic fracturing, drilling of horizontal wells with multi-stage hydraulic fracturing, and physic-chemical optimization of the bottom-hole formation zone. It was revealed that two geotechnical jobs, namely, formation hydraulic fracturing (FHF) and drilling of lateral shafts in the Severo-Ostrovnoe field are the most highly effective methods for intensifying reservoir development and increasing oil recovery. SXL was conducted at 5 wells. The average oil production rate is 26.6 tons per day, which is the best indicator. Before this event, the production rate of the well was 2.1 tons per day. Currently, the effect of ongoing activities continues.


2017 ◽  
pp. 89-92
Author(s):  
I. T. Shkryaba ◽  
S. F. Mulyavin ◽  
I. I. Kleshchenko ◽  
V. Yu. Kusakin

The analysis of efficiency at engaging into development of hard-to-recover reserves of oil of horizontal wells using multistage hydraulic fracturing has been conducted. The results are presented as a comparison of the dynamics of their work to directional wells, in which also hydraulic fracturing had been held.


Author(s):  
T. R. Khisamiev ◽  
◽  
I. R. Bashirov ◽  
V. Sh. Mukhametshin ◽  
L. S. Kuleshova ◽  
...  

The article is devoted to the issue of optimizing the development system and increasing the efficiency of carbonate deposits of the Tournaisian stage of the Chetyrmanskoye field developing, and the formation of a strategy for their additional development. As a result of the horizontal drilling, the rate of withdrawal from current recoverable reserves in the main area in terms of reserves increased from 0.3 to 5%, which confirms the high efficiency of horizontal wells drilling with multi-stage hydraulic fracturing in reservoirs with high stratification and heterogeneity degree of the productive section in order to increase the rate of reserves production and achieve the approved oil recovery factor, as well as the high efficiency of the proposed methodological approach in the design of the facility development by a system of horizontal wells, the correct choice of the facility development strategy in the design solutions formation. Keywords: oil fields development; carbonate deposits; development of reserves; multi-stage hydraulic fracturing; horizontal well.


2021 ◽  
Author(s):  
Aleksander Valerievich Miroshnichenko ◽  
Valery Alekseevich Korotovskikh ◽  
Timur Ravilevich Musabirov ◽  
Aleksei Eduardovich Fedorov ◽  
Khakim Khalilovich Suleimanov

Abstract The deterioration of the reservoir properties of potential oil and gas bearing areas on mature and green fields, as well as the increase in the volume of hard-to-recover reserves on low-permeable reservoirs set us new challenges in searching and using effective development technologies to maintain and even increase the oil production levels. Based on successful international experience, Russian oil and gas companies use horizontal wells (HW) with multi-stage hydraulic fracturing (MSHF) for the cost-effective development of low-permeable reservoirs. Thus, since the first pilot works of drilling technologies and completion of HW with MSHF in 2011, at the beginning of 2020, over 1,200 HW with MSHF were drilled and came on stream at the fields of LLC RN-Yuganskneftegaz, about half of which are at the exploitation play AS10-12 of the northern license territory (NLT) of the Priobskoye field. In searching the best technologies and engineering solutions, the company tested different lengths of horizontal section of HW, the number of hydraulic fracturing (HF) stages and distances between hydraulic fracturing ports, as well as different specific mass of the proppant per frac port. Recently, there has been a tendency in design solutions to increase the length of the HWs and the number of hydraulic fractures with a decreasing distance between the frac ports and a decreasing specific mass of the proppant per frac port. This work studies the actual and theoretical efficiency of HW with MSHF of various designs (different lengths of horizontal section of HW and the number of HF stages) and to assess the viability of increasing the technological complexity, as well as to analyze the actual impact of loading the proppant mass per port on performing HW with MSHF. The study is based on the results of the analysis of the factual experience accumulated over the entire history of the development of the exploitation play AS10-12 of the NLT of the Priobskoye field of the Rosneft Company. In studying the viability of increasing the technological complexity, especially, increasing the length of horizontal section of HW, increasing the number of HF stages, and reducing the distance between the frac ports: we discovered the typical methodological errors made in analyzing the efficiency of wells of various designs; we developed the methodology for analysis of the actual multiplicity of indicators of wells of various designs, in particular, HW with MSHF relative to deviated wells (DW) with HF; we carried out the statistical analysis of the actual values of the multiplicity of performance indicators and completion parameters of HW with MSHF of various designs relative to the surrounding DW with HF of the exploitation play AS10-12 of the NLT of the Priobskoye field; we performed the theoretical calculation of the multiplicity of the productivity coefficient for the HW with MSHF of various designs relative to DW with HF for the standard development system of the exploitation play AS10-12 of the NLT of the Priobskoye field; we compared the actual and theoretical results. The paper also presents the results of studying the actual effect of changes of proppant's mass per port on performance indicators of HW with MSHF of the same design and with an increase in the number of fractures of the hydraulic fracturing without changing the length of horizontal section of HW. As for performance indicators, being the basis for estimating the efficiency of HW with MSHF of various designs, we used the productivity index per meter of the effective reservoir thickness and the cumulative fluid production per meter of the effective reservoir thickness per a certain period of operation. And as the completion parameters, we used the length of the horizontal section of HW, the number of HF stages, the distance between the frac ports, and the specific mass of the proppant per meter of the effective reservoir thickness per frac port. The results of this work are the determining vector of development for future design decisions in improving the efficiency of HW with MSHF.


2021 ◽  
Author(s):  
Ruslan Rubikovich Urazov ◽  
Alfred Yadgarovich Davletbaev ◽  
Alexey Igorevich Sinitskiy ◽  
Ilnur Anifovich Zarafutdinov ◽  
Artur Khamitovich Nuriev ◽  
...  

Abstract This research presents a modified approach to the data interpretation of Rate Transient Analysis (RTA) in hydraulically fractured horizontal well. The results of testing of data interpretation technique taking account of the flow allocation in the borehole according to the well logging and to the injection tests outcomes while carrying out hydraulic fracturing are given. In the course of the interpretation of the field data the parameters of each fracture of hydraulic fracturing were selected with control for results of well logging (WL) by defining the fluid influx in the borehole.


2021 ◽  
Author(s):  
Nikolay Mikhaylovich Migunov ◽  
Aleksey Dmitrievich Alekseev ◽  
Dinar Farvarovich Bukharov ◽  
Vadim Alexeevich Kuznetsov ◽  
Aleksandr Yuryevich Milkov ◽  
...  

Abstract According to the US Energy Agency (EIA), Russia is the world leader in terms of the volume of technically recoverable "tight oil" resources (U.S. Department of Energy, 2013). To convert them into commercial production, it is necessary to create cost-effective development technologies. For this purpose, a strategy has been adopted, which is implemented at the state level and one of the key elements of which is the development of the high-tech service market. In 2017, the Minister of Energy of the Russian Federation, in accordance with a government executive order (Government Executive Order of the Russian Federation, 2014), awarded the Gazprom Neft project on the creation of a complex of domestic technologies and high-tech equipment for developing the Bazhenov formation with the national status. It is implemented in several directions and covers a wide range of technologies required for the horizontal wells drilling and stimulating flows from them using multi-stage hydraulic fracturing (MS HF) methods. Within the framework of the technological experiment implemented at the Palyanovskaya area at the Krasnoleninskoye field by the Industrial Integration Center "Gazpromneft - Technological Partnerships" (a subsidiary of Gazprom Neft), from 2015 to 2020, 29 high-tech wells with different lengths of horizontal wellbore were constructed, and multistage hydraulic fracturing operations were performed with various designs. Upon results of 2020, it became possible to increase annual oil production from the Bazhenov formation by 78 % in comparison with up to 100,000 tons in 2019. The advancing of development technologies allowed the enterprise to decrease for more than twice the cost of the Bazhenov oil production from 30 thousand rubles per ton (69$/bbl) at the start of the project in 2015 to 13 thousand rubles (24$/bbl) in 2020. A significant contribution to the increase in production in 2020 was made by horizontal wells, where MS HF operations were carried out using an experimental process fluid, which is based on the modified Si Bioxan biopolymer. This article is devoted to the background of this experiment and the analysis of its results.


Sign in / Sign up

Export Citation Format

Share Document