Kapadokya yöresi Geç Holosen Paleovejetasyon koşullarının fosil polen kayıtları ile mekânsal ve zamansal bağlamda rekonstrüksiyonu (Reconstruction of the Late Holocene Palaeovegetation Conditions of the Cappadocia Region in Spatial and Temporal Context With Fossil Pollen Records)

2018 ◽  
Author(s):  
Çetin Şenkul ◽  
Ahmet Köse
Ecosystems ◽  
2021 ◽  
Author(s):  
Robert O’Dwyer ◽  
Laurent Marquer ◽  
Anna-Kari Trondman ◽  
Anna Maria Jönsson

AbstractClimate change and human activities influence the development of ecosystems, with human demand of ecosystem services altering both land use and land cover. Fossil pollen records provide time series of vegetation characteristics, and the aim of this study was to create spatially continuous reconstructions of land cover through the Holocene in southern Sweden. The Landscape Reconstruction Algorithm (LRA) was applied to obtain quantitative reconstructions of pollen-based vegetation cover at local scales, accounting for pollen production, dispersal, and deposition mechanisms. Pollen-based local vegetation estimates were produced from 41 fossil pollen records available for the region. A comparison of 17 interpolation methods was made and evaluated by comparing with current land cover. Simple kriging with cokriging using elevation was selected to interpolate the local characteristics of past land cover, to generate more detailed reconstructions of trends and degree of variability in time and space than previous studies based on pollen data representing the regional scale. Since the Mesolithic, two main processes have acted to reshape the land cover of southern Sweden, originally mostly covered by broad-leaved forests. The natural distribution limit of coniferous forest has moved southward during periods with colder climate and retracted northward during warmer periods, and human expansion in the area and agrotechnological developments has led to a gradually more open landscape, reaching maximum openness at the beginning of the 20th century. The recent intensification of agriculture has led to abandonment of less fertile agricultural fields and afforestation with conifer forest.


2015 ◽  
Vol 133 (2) ◽  
pp. 223-235 ◽  
Author(s):  
Yun Zhang ◽  
Zhaochen Kong ◽  
Qi-Bin Zhang ◽  
Zhenjing Yang

2000 ◽  
Vol 53 (3) ◽  
pp. 341-351 ◽  
Author(s):  
Kenneth L. Cole ◽  
Eugene Wahl

AbstractPaleoenvironments of the Torrey Pines State Reserve were reconstructed from a 3600-yr core from Los Peñasquitos Lagoon using fossil pollen, spores, charcoal, chemical stratigraphy, particle size, and magnetic susceptibility. Late Holocene sediments were radiocarbon dated, while the historical sediments were dated using sediment chemistry, fossil pollen, and historical records. At 3600 yr B.P., the estuary was a brackish-water lagoon. By 2800 yr B.P., Poaceae (grass) pollen increased to high levels, suggesting that the rising level of the core site led to its colonization by Spartina foliosa (cord-grass), the lowest-elevation plant type within regional estuaries. An increase in pollen and spores of moisture-dependent species suggests a climate with more available moisture after 2600 yr B.P. This change is similar to that found 280 km to the north at 3250 yr B.P., implying that regional climate changes were time-transgressive from north to south. Increased postsettlement sediment input resulted from nineteenth-century land disturbances caused by grazing and fire. Sedimentation rates increased further in the twentieth century due to closure of the estuarine mouth. The endemic Pinus torreyana (Torrey pine) was present at the site throughout this 3600-yr interval but was less numerous prior to 2100 yr B.P. This history may have contributed to the low genetic diversity of this species.


The Holocene ◽  
2021 ◽  
pp. 095968362199465
Author(s):  
Dael Sassoon ◽  
William J Fletcher ◽  
Alastair Hotchkiss ◽  
Fern Owen ◽  
Liting Feng

Around 4000 cal yr BP, Scots pine ( Pinus sylvestris) suffered a widespread demise across the British Isles. This paper presents new information about P. sylvestris populations found in the Welsh Marches (western central Britain), for which the long-term history and origins are poorly known. Two new pollen records were produced from the Lin Can Moss ombrotrophic bog (LM18) and the Breidden Hill pond (BH18). The LM18 peat core is supported by loss-on-ignition, humification analysis and radiocarbon dating. Lead concentrations were used to provide an estimated timeframe for the recent BH18 record. In contrast to many other Holocene pollen records from the British Isles, analysis of LM18 reveals that Scots pine grains were deposited continuously between c. 6900–300 cal yr BP, at frequencies of 0.3–5.4%. It is possible that individual Scots pine trees persisted through the wider demise on thin soils of steep drought-prone crags of hills or the fringes of lowland bogs in the Welsh Marches. At BH18, the record indicates a transition from broadleaved to mixed woodland, including conifer species introduced around AD 1850 including Picea and Pinus. The insights from BH18 suggest that the current populations may largely be the result of planting. Comparison of the LM18 findings with other regional pollen records highlights consistent patterns, including a Mid-Holocene maximum (ca. 7000 cal yr BP), long-term persistence at low pollen percentages and a Late-Holocene minimum (ca. 3000 cal yr BP). These distinctive trends encourage further studies on refugial areas for Scots pine in this region and elsewhere.


The Holocene ◽  
2019 ◽  
Vol 29 (5) ◽  
pp. 902-922 ◽  
Author(s):  
Dafna Langgut ◽  
Rachid Cheddadi ◽  
Josѐ Sebastián Carrión ◽  
Mark Cavanagh ◽  
Daniele Colombaroli ◽  
...  

Olive ( Olea europaea L.) was one of the most important fruit trees in the ancient Mediterranean region and a founder species of horticulture in the Mediterranean Basin. Different views have been expressed regarding the geographical origins and timing of olive cultivation. Since genetic studies and macro-botanical remains point in different directions, we turn to another proxy – the palynological evidence. This study uses pollen records to shed new light on the history of olive cultivation and large-scale olive management. We employ a fossil pollen dataset composed of high-resolution pollen records obtained across the Mediterranean Basin covering most of the Holocene. Human activity is indicated when Olea pollen percentages rise fairly suddenly, are not accompanied by an increase of other Mediterranean sclerophyllous trees, and when the rise occurs in combination with consistent archaeological and archaeobotanical evidence. Based on these criteria, our results show that the southern Levant served as the locus of primary olive cultivation as early as ~6500 years BP (yBP), and that a later, early/mid 6th millennium BP cultivation process occurred in the Aegean (Crete) – whether as an independent large-scale management event or as a result of knowledge and/or seedling transfer from the southern Levant. Thus, the early management of olive trees corresponds to the establishment of the Mediterranean village economy and the completion of the ‘secondary products revolution’, rather than urbanization or state formation. From these two areas of origin, the southern Levant and the Aegean olive cultivation spread across the Mediterranean, with the beginning of olive horticulture in the northern Levant dated to ~4800 yBP. In Anatolia, large-scale olive horticulture was palynologically recorded by ~3200 yBP, in mainland Italy at ~3400 yBP, and in the Iberian Peninsula at mid/late 3rd millennium BP.


1999 ◽  
Vol 214 (1-4) ◽  
pp. 199-210 ◽  
Author(s):  
M. K. Macphail ◽  
A. D. Partridge ◽  
E. M. Truswell
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document