Design and Simulation of Piezoelectric Bimorph Cantilever Beam

2019 ◽  
Author(s):  
Nitesh Dixit ◽  
Amit Kumar Saraf ◽  
Dr. MP Singh
Author(s):  
Saurav Gupta ◽  
Grant M. Warner

Conventional method of measuring the mechanical properties of rotating machinery is to couple sensors on the machine through a slip ring, which is a non-trivial, expensive, lengthy and manpower intensive process. An alternative to this is to use a contactless RF slip ring which has no physical wear and hence no maintenance. But application of contactless RF slip ring is possible only if these services are low powered and sensor signals can be multiplexed. With the advance in low powered MEMS sensors, contactless slip ring system can be used. But providing power to these sensors is an issue. One approach would be to harness power from the untapped surrounding energy which could be used to recharge and/or replace battery powered connections. One method to accomplish this is to use piezoelectric materials (PZT) to capture energy lost due to vibration and rotation of the test equipment. This captured energy can then be used to provide uninterrupted power to the appropriate sensors. Focusing our attention on blades, rotating structures will be modeled as cantilever beam. Piezoelectric bimorph attached to the rotating cantilever beam will provide an estimate for the available power that can be used for harvesting.


2012 ◽  
Vol 610-613 ◽  
pp. 2583-2588
Author(s):  
Jun Jie Gong ◽  
Ying Ying Xu ◽  
Zhi Lin Ruan

The vibration energy can be converted to electrical energy directly and efficiently using piezoelectric cantilever beam based on piezoelectric effect. Since its structure is simple and its working process is unpoisonous to the environment, the piezoelectric cantilever beam can be used in various fields comprehensively. The present paper perform an analysis on the vibration energy harvesting problem of piezoelectric bimorph cantilever beam. The piezoelectric cantilever model has been formulated using the theory of elasticity mechanics and piezoelectric theory. A prototype of piezoelectric power generator is set up to do vibration test, and the electromechanical coupling FEA model under vibration load is built to simulate its output displacement, stress and voltage. The present numerical results of piezoelectric bimorph cantilever coincide well with our related experimental results, which shows the validity of the present FEA model and the relate results.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Gongbo Zhou ◽  
Houlian Wang ◽  
Zhencai Zhu ◽  
Linghua Huang ◽  
Wei Li

Harvesting the energy contained in the running environment of rotating machinery would be a good way to supplement energy to the wireless sensor. In this paper, we take piezoelectric bimorph cantilever beam with parallel connection mode as energy collector and analyze the factors which can influence the generation performance. First, a modal response theory model is built. Second, the static analysis, modal analysis, and piezoelectric harmonic response analysis of the wind-induced piezoelectric bimorph cantilever beam are given in detail. Finally, an experiment is also conducted. The results show that wind-induced piezoelectric bimorph cantilever beam has low resonant frequency and stable output under the first modal mode and can achieve the maximum output voltage under the resonant condition. The output voltage increases with the increase of the length and width of wind-induced piezoelectric bimorph cantilever beam, but the latter increasing amplitude is relatively smaller. In addition, the output voltage decreases with the increase of the thickness and the ratio of metal substrate to piezoelectric patches thickness. The experiment showed that the voltage amplitude generated by the piezoelectric bimorph cantilever beam can reach the value simulated in ANSYS, which is suitable for actual working conditions.


Author(s):  
Luiz Felipe Ribas Motta ◽  
Guilherme Silva Prado ◽  
Venicio Silva Araujo ◽  
Heinsten Frederich Leal dos Santos

Author(s):  
Arthur Mereles ◽  
Marcus Varanis ◽  
Anderson Langone Silva ◽  
José Manoel Balthazar ◽  
Eduardo Márcio de Oliveira Lopes ◽  
...  

2019 ◽  
Vol 67 (3) ◽  
pp. 142-154 ◽  
Author(s):  
M. Y. Abdollahzadeh Jamalabadi ◽  
Moon K. Kwak

This study presents the analytical solution and experimental investigation of the galloping energy harvesting from oscillating elastic cantilever beam with a rigid mass. A piezoelectric wafer was attached to galloping cantilever beam to harvest vibrational energy in electric charge form. Based on Euler-Bernoulli beam assumption and piezoelectric constitutive equation, kinetic energy and potential energy of system were obtained for the proposed structure. Virtual work by generated charge and galloping force applied onto the rigid mass was obtained based on Kirchhoff's law and quasistatic assumption. Nonlinear governing electro-mechanical equations were then obtained using Hamilton's principle. As the system vibrates by self-exciting force, the fundamental mode is the only one excited by galloping. Hence, multi-degreeof-freedom equation of motion is simplified to one-degree-of-freedom model. In this study, closed-form solutions for electro-mechanical equations were obtained by using multi-scale method. Using these solutions, we can predict galloping amplitude, voltage amplitude and harvested power level. Numerical and experimental results are presented and discrepancies between experimental and numerical results are fully discussed.


Sign in / Sign up

Export Citation Format

Share Document