Genetic Alzheimer's Disease Risk Affects the Neural Mechanisms of Pattern Separation in Hippocampal Subfields

2020 ◽  
Author(s):  
Hweeling Lee ◽  
R. Stirnberg ◽  
S. Wu ◽  
X. Wang ◽  
T. Stoecker ◽  
...  
2020 ◽  
Vol 30 (21) ◽  
pp. 4201-4212.e3
Author(s):  
Hweeling Lee ◽  
Rüdiger Stirnberg ◽  
Sichu Wu ◽  
Xin Wang ◽  
Tony Stöcker ◽  
...  

2015 ◽  
Vol 49 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Pau Pastor ◽  
Fermín Moreno ◽  
Jordi Clarimón ◽  
Agustín Ruiz ◽  
Onofre Combarros ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaker El-Sappagh ◽  
Jose M. Alonso ◽  
S. M. Riazul Islam ◽  
Ahmad M. Sultan ◽  
Kyung Sup Kwak

AbstractAlzheimer’s disease (AD) is the most common type of dementia. Its diagnosis and progression detection have been intensively studied. Nevertheless, research studies often have little effect on clinical practice mainly due to the following reasons: (1) Most studies depend mainly on a single modality, especially neuroimaging; (2) diagnosis and progression detection are usually studied separately as two independent problems; and (3) current studies concentrate mainly on optimizing the performance of complex machine learning models, while disregarding their explainability. As a result, physicians struggle to interpret these models, and feel it is hard to trust them. In this paper, we carefully develop an accurate and interpretable AD diagnosis and progression detection model. This model provides physicians with accurate decisions along with a set of explanations for every decision. Specifically, the model integrates 11 modalities of 1048 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) real-world dataset: 294 cognitively normal, 254 stable mild cognitive impairment (MCI), 232 progressive MCI, and 268 AD. It is actually a two-layer model with random forest (RF) as classifier algorithm. In the first layer, the model carries out a multi-class classification for the early diagnosis of AD patients. In the second layer, the model applies binary classification to detect possible MCI-to-AD progression within three years from a baseline diagnosis. The performance of the model is optimized with key markers selected from a large set of biological and clinical measures. Regarding explainability, we provide, for each layer, global and instance-based explanations of the RF classifier by using the SHapley Additive exPlanations (SHAP) feature attribution framework. In addition, we implement 22 explainers based on decision trees and fuzzy rule-based systems to provide complementary justifications for every RF decision in each layer. Furthermore, these explanations are represented in natural language form to help physicians understand the predictions. The designed model achieves a cross-validation accuracy of 93.95% and an F1-score of 93.94% in the first layer, while it achieves a cross-validation accuracy of 87.08% and an F1-Score of 87.09% in the second layer. The resulting system is not only accurate, but also trustworthy, accountable, and medically applicable, thanks to the provided explanations which are broadly consistent with each other and with the AD medical literature. The proposed system can help to enhance the clinical understanding of AD diagnosis and progression processes by providing detailed insights into the effect of different modalities on the disease risk.


2021 ◽  
Author(s):  
Nicolai Franzmeier ◽  
Rik Ossenkoppele ◽  
Matthias Brendel ◽  
Anna Rubinski ◽  
Ruben Smith ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jonathan D. Cherry ◽  
Camille D. Esnault ◽  
Zachary H. Baucom ◽  
Yorghos Tripodis ◽  
Bertrand R. Huber ◽  
...  

AbstractChronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease, characterized by hyperphosphorylated tau, found in individuals with a history of exposure to repetitive head impacts. While the neuropathologic hallmark of CTE is found in the cortex, hippocampal tau has proven to be an important neuropathologic feature to examine the extent of disease severity. However, the hippocampus is also heavily affected in many other tauopathies, such as Alzheimer’s disease (AD). How CTE and AD differentially affect the hippocampus is unclear. Using immunofluorescent analysis, a detailed histologic characterization of 3R and 4R tau isoforms and their differential accumulation in the temporal cortex in CTE and AD was performed. CTE and AD were both observed to contain mixed 3R and 4R tau isoforms, with 4R predominating in mild disease and 3R increasing proportionally as pathological severity increased. CTE demonstrated high levels of tau in hippocampal subfields CA2 and CA3 compared to CA1. There were also low levels of tau in the subiculum compared to CA1 in CTE. In contrast, AD had higher levels of tau in CA1 and subiculum compared to CA2/3. Direct comparison of the tau burden between AD and CTE demonstrated that CTE had higher tau densities in CA4 and CA2/3, while AD had elevated tau in the subiculum. Amyloid beta pathology did not contribute to tau isoform levels. Finally, it was demonstrated that higher levels of 3R tau correlated to more severe extracellular tau (ghost tangles) pathology. These findings suggest that mixed 3R/4R tauopathies begin as 4R predominant then transition to 3R predominant as pathological severity increases and ghost tangles develop. Overall, this work demonstrates that the relative deposition of tau isoforms among hippocampal subfields can aid in differential diagnosis of AD and CTE, and might help improve specificity of biomarkers for in vivo diagnosis.


2010 ◽  
Vol 11 (1) ◽  
Author(s):  
José Luis Vázquez-Higuera ◽  
Eloy Rodríguez-Rodríguez ◽  
Pascual Sánchez-Juan ◽  
Ignacio Mateo ◽  
Ana Pozueta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document