tau isoforms
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 34)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Hedieh Shahpasand‐Kroner ◽  
Jennifer Portillo ◽  
Carter Lantz ◽  
Paul M. Seidler ◽  
Natalie Sarafian ◽  
...  
Keyword(s):  

2021 ◽  
Vol 17 (S5) ◽  
Author(s):  
Sherif Bayoumy ◽  
Ben Den Dulk ◽  
Zulaiga Hussainali ◽  
Inge M.W. Verberk ◽  
Wiesje M van der Flier ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sherif Bayoumy ◽  
Inge M. W. Verberk ◽  
Ben den Dulk ◽  
Zulaiga Hussainali ◽  
Marissa Zwan ◽  
...  

Abstract Introduction Studies using different assays and technologies showed highly promising diagnostic value of plasma phosphorylated (P-)tau levels for Alzheimer’s disease (AD). We aimed to compare six P-tau Simoa assays, including three P-tau181 (Eli Lilly, ADx, Quanterix), one P-tau217 (Eli Lilly), and two P-tau231 (ADx, Gothenburg). Methods We studied the analytical (sensitivity, precision, parallelism, dilution linearity, and recovery) and clinical (40 AD dementia patients, age 66±8years, 50%F; 40 age- and sex-matched controls) performance of the assays. Results All assays showed robust analytical performance, and particularly P-tau217 Eli Lilly; P-tau231 Gothenburg and all P-tau181 assays showed robust clinical performance to differentiate AD from controls, with AUCs 0.936–0.995 (P-tau231 ADx: AUC = 0.719). Results obtained with all P-tau181 assays, P-tau217 Eli Lilly assay, and P-tau231 Gothenburg assay strongly correlated (Spearman’s rho > 0.86), while correlations with P-tau231 ADx results were moderate (rho < 0.65). Discussion P-tau isoforms can be measured robustly by several novel high-sensitive Simoa assays.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0251611
Author(s):  
Jennifer Grundman ◽  
Brian Spencer ◽  
Floyd Sarsoza ◽  
Robert A. Rissman

Alternative splicing of the gene MAPT produces several isoforms of tau protein. Overexpression of these isoforms is characteristic of tauopathies, which are currently untreatable neurodegenerative diseases. Though non-canonical functions of tau have drawn interest, the role of tau isoforms in these diseases has not been fully examined and may reveal new details of tau-driven pathology. In particular, tau has been shown to promote activation of transposable elements—highly regulated nucleotide sequences that replicate throughout the genome and can promote immunologic responses and cellular stress. This study examined tau isoforms’ roles in promoting cell damage and dysregulation of genes and transposable elements at a family-specific and locus-specific level. We performed immunofluorescence, Western blot and cytotoxicity assays, along with paired-end RNA sequencing on differentiated SH-SY5Y cells infected with lentiviral constructs of tau isoforms and treated with amyloid-beta oligomers. Our transcriptomic findings were validated using publicly available RNA-sequencing data from Alzheimer’s disease, progressive supranuclear palsy and control human samples from the Accelerating Medicine’s Partnership for AD (AMP-AD). Significance for biochemical assays was determined using Wilcoxon ranked-sum tests and false discovery rate. Transcriptome analysis was conducted through DESeq2 and the TEToolkit suite available from the Hammell lab at Cold Spring Harbor Laboratory. Our analyses show overexpression of different tau isoforms and their interactions with amyloid-beta in SH-SY5Y cells result in isoform-specific changes in the transcriptome, with locus-specific transposable element dysregulation patterns paralleling those seen in patients with Alzheimer’s disease and progressive supranuclear palsy. Locus-level transposable element expression showed increased dysregulation of L1 and Alu sites, which have been shown to drive pathology in other neurological diseases. We also demonstrated differences in rates of cell death in SH-SY5Y cells depending on tau isoform overexpression. These results demonstrate the importance of examining tau isoforms’ role in neurodegeneration and of further examining transposable element dysregulation in tauopathies and its role in activating the innate immune system.


Brain ◽  
2021 ◽  
Author(s):  
Masato Hosokawa ◽  
Masami Masuda-Suzukake ◽  
Hiroshi Shitara ◽  
Aki Shimozawa ◽  
Genjiro Suzuki ◽  
...  

Abstract The phenomenon of "prion-like propagation" in which aggregates of abnormal amyloid-fibrilized protein propagate between neurons and spread pathology, is attracting attention as a new mechanism in neurodegenerative diseases. There is a strong correlation between the accumulation or spread of abnormal tau aggregates and the clinical symptoms of tauopathies. Microtubule-associated protein of tau contains a microtubule-binding domain which consists of 3-repeats or 4-repeats due to alternative mRNA splicing of transcripts for the Microtubule-associated protein of tau gene. Although a number of models for tau propagation have been reported, most utilize 4-repeat human tau transgenic mice or adult wild-type mice expressing only endogenous 4-repeat tau and these models have not been able to reproduce the pathology of Alzheimer's disease in which 3-repeat and 4-repeat tau accumulate simultaneously, or that of Pick’s disease in which only 3-repeat tau is aggregated. These deficiencies may reflect differences between human and rodent tau isoforms in the brain. To overcome this problem, we used genome editing techniques to generate mice that express an equal ratio of endogenous 3-repeat and 4-repeat tau, even after they become adults. We injected these mice with sarkosyl-insoluble fractions derived from the brains of human tauopathy patients such as those afflicted with Alzheimer’s disease (3- and 4-repeat tauopathy), corticobasal degeneration (4-repeat tauopathy) or Pick’s disease (3-repeat tauopathy). At 8-9 months following intracerebral injection of mice, histopathological and biochemical analyses revealed that the abnormal accumulation of tau was seed-dependent, with 3- and 4-repeat tau in Alzheimer’s disease-injected brains, 4-repeat tau only in corticobasal degeneration-injected brains, and 3-repeat tau only in Pick disease-injected brains, all of which contained isoforms related to those found in the injected seeds. The injected abnormal tau was seeded, and accumulated at the site of injection and at neural connections, predominantly within the same site. The abnormal tau newly accumulated was found to be endogenous in these mice and to have crossed the species barrier. Of particular importance, Pick’s body-like inclusions were observed in Pick’s disease-injected mice, and accumulations characteristic of Pick’s disease were reproduced, suggesting that we have developed the first model that recapitulates the pathology of Pick’s disease. These models are not only useful for elucidating the mechanism of propagation of tau pathology involving both 3- and 4-repeat-isoforms, but can also reproduce the pathology of tauopathies, which should lead to the discovery of new therapeutic agents.


2021 ◽  
Vol 22 (18) ◽  
pp. 9728
Author(s):  
Chengchen Wu ◽  
Junyi Zhao ◽  
Qiuping Wu ◽  
Qiulong Tan ◽  
Qiong Liu ◽  
...  

The microtubule-associated protein tau can undergo liquid–liquid phase separation (LLPS) to form membraneless condensates in neurons, yet the underlying molecular mechanisms and functions of tau LLPS and tau droplets remain to be elucidated. The human brain contains mainly 6 tau isoforms with different numbers of microtubule-binding repeats (3R, 4R) and N-terminal inserts (0N, 1N, 2N). However, little is known about the role of N-terminal inserts. Here we observed the dynamics of three tau isoforms with different N-terminal inserts in live neuronal cell line HT22. We validated tau LLPS in cytoplasm and found that 2N-tau forms liquid-like, hollow-shell droplets. Tau condensates became smaller in 1N-tau comparing with 2N-tau, while no obvious tau accumulated dots were shown in 0N-tau. The absence of N-terminal inserts significantly affected condensate colocalization of tau and p62. The results reveal insights into the tau LLPS assembly mechanism and functional effects of N-terminal inserts in tau.


Author(s):  
Soong Ho Kim ◽  
Kurt Farrell ◽  
Stephanie Cosentino ◽  
Jean-Paul G Vonsattel ◽  
Phyllis L Faust ◽  
...  

Abstract Patients with essential tremor (ET) frequently develop concurrent dementia, which is often assumed to represent co-morbid Alzheimer disease (AD). Autopsy studies have identified a spectrum of tau pathologies in ET and tau isoforms have not been examined in ET. We performed immunoblotting using autopsy cerebral cortical tissue from patients with ET (n = 13), progressive supranuclear palsy ([PSP], n = 10), Pick disease ([PiD], n = 2), and AD (n = 7). Total tau in ET samples was similar to that in PSP and PiD but was significantly lower than that in AD. Abnormal tau levels measured using the AT8 phospho-tau specific (S202/T205/S208) monoclonal antibody in ET were similar to those in PSP but were lower than in PiD and AD. In aggregates, tau with 3 microtubule-binding domain repeats (3R) was significantly higher in AD than ET, while tau with 4 repeats (4R) was significantly higher in PSP. Strikingly, the total tau without N-terminal inserts in ET was significantly lower than in PSP, PiD, and AD, but total tau with other N-terminal inserts was not. Monomeric tau with one insert in ET was similar to that in PSP and PiD was lower than in AD. Thus, ET brains exhibit an expression profile of tau protein isoforms that diverges from that of other tauopathies.


2021 ◽  
Vol 29 ◽  
Author(s):  
Danyelle Sadala ◽  
Vyctoria Ramos ◽  
Danielle dos Santos Maia Salheb de Oliveira ◽  
Maria José da Silva Fernandes ◽  
Marcia Regina Cominetti

Introduction. The amyloid cascade hypothesis proposes that extracellular senile plaques - largely composed of aggregated beta-amyloid (Aβ) peptides - are responsible for the events that lead to neuronal death that occurs in Alzheimer's disease (AD). On the other hand, the hyperphosphorylated (p-tau) and unstructured tau protein is responsible for intracellular neurofibrillary tangles, also common in AD. Clinical diagnostic criteria for AD include Aβ and p-tau biomarker tests in cerebrospinal fluid (CSF), in addition to neuroimaging measures, clinical history, and psychometric tests. However, due to their invasive nature, side effects and need for trained personnel in a hospital environment for their collection, CSF biomarkers are not suitable for large-scale screening. Therefore, alternative blood-based biomarkers are under intense investigation. Objective. Focus on recent advances in different p-tau isoforms as blood-based AD biomarkers. Method. Review performed by searches in Medline/PubMed databases. Results. The p-tau isoforms 181 and 217 represent accessible and scalable molecules for screening and diagnosing AD, mainly due to their ability to differentiate patients with the disease from cognitively healthy participants. These results should be reproduced in larger and more representative cohorts of population diversity. Conclusions. This review provides a more comprehensive exploration of blood p-tau as a specific molecular biomarker for AD, which could contribute not only to screening pre-symptomatic patients for clinical trials, but also to monitoring disease progression and evaluating modifying therapies. of the disease.


2021 ◽  
Author(s):  
Xinyu Xiang ◽  
Tamta Arakhamia ◽  
Yari Carlomagno ◽  
Shikhar Dhingra ◽  
Manon Thierry ◽  
...  

Misfolding and aggregation of tau protein is implicated in many neurodegenerative diseases that are typified by the presence of large, filamentous tau inclusions. The aggregation of tau in human brain is disease-specific with characteristic filaments defining the neuropathology. An understanding of how identical tau isoforms aggregate into disparate filament morphologies in phenotypically distinct tau-related diseases remains elusive. Here, we determine the structure of a brain-derived twisted tau filament in progressive supranuclear palsy and compare it to a dissimilar tau fold found in corticobasal degeneration. While the tau filament core in both diseases is comprised of residues 274 to 380, molecular-level polymorphism exists. Potential origins of the molecular polymorphism, such as noncovalent cofactor binding, are identified and predicted to modulate tau filament structures in the brain.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sarah Bachmann ◽  
Michael Bell ◽  
Jennifer Klimek ◽  
Hans Zempel

In the adult human brain, six isoforms of the microtubule-associated protein TAU are expressed, which result from alternative splicing of exons 2, 3, and 10 of the MAPT gene. These isoforms differ in the number of N-terminal inserts (0N, 1N, 2N) and C-terminal repeat domains (3R or 4R) and are differentially expressed depending on the brain region and developmental stage. Although all TAU isoforms can aggregate and form neurofibrillary tangles, some tauopathies, such as Pick’s disease and progressive supranuclear palsy, are characterized by the accumulation of specific TAU isoforms. The influence of the individual TAU isoforms in a cellular context, however, is understudied. In this report, we investigated the subcellular localization of the human-specific TAU isoforms in primary mouse neurons and analyzed TAU isoform-specific effects on cell area and microtubule dynamics in human SH-SY5Y neuroblastoma cells. Our results show that 2N-TAU isoforms are particularly retained from axonal sorting and that axonal enrichment is independent of the number of repeat domains, but that the additional repeat domain of 4R-TAU isoforms results in a general reduction of cell size and an increase of microtubule counts in cells expressing these specific isoforms. Our study points out that individual TAU isoforms may influence microtubule dynamics differentially both by different sorting patterns and by direct effects on microtubule dynamics.


Sign in / Sign up

Export Citation Format

Share Document