scholarly journals A Modified Maximum Relevance Minimum Redundancy Feature Selection Method Based on Tabu Search for Parkinson’s Disease Mining

2020 ◽  
Author(s):  
Waheeda Almayyan
2017 ◽  
Vol 2 (3) ◽  
pp. 167-171
Author(s):  
Ashraf Osman Ibrahim ◽  
Walaa Akif Hussien ◽  
Ayat Mohammoud Yagoop ◽  
Mohd Arfian Ismail

Recently, several works have focused on detection of a different disease using computational intelligence techniques. In this paper, we applied feature selection method and radial basis function neural network (RBFN) to classify the diagnosis of Parkinson’s disease. The feature selection (FS) method used to reduce the number of attributes in Parkinson disease data. The Parkinson disease dataset is acquired from UCI repository of large well-known data sets. The experimental results have revealed significant improvement to detect Parkinson’s disease using feature selection method and RBF network.


Author(s):  
Sarfaraz Masood ◽  
Khwaja Wisal ◽  
Om Pal ◽  
Chanchal Kumar

Parkinson’s disease (PD) is a highly common neurological disease affecting a large population worldwide. Several studies revealed that the degradation of voice is one of its initial symptoms, which is also known as dysarthria. In this work, we attempt to explore and harness the correlation between various features in the voice samples observed in PD subjects. To do so, a novel two-level ensemble-based feature selection method has been proposed, whose results were combined with an MLP based classifier using K-fold cross-validation as the re-sampling strategy. Three separate benchmark datasets of voice samples were used for the experimentation work. Results strongly suggest that the proposed feature selection framework helps in identifying an optimal set of features which further helps in highly accurate identification of PD patients using a Multi-Layer Perceptron from their voice samples. The proposed model achieves an overall accuracy of 98.3%, 95.1% and 100% on the three selected datasets respectively. These results are significantly better than those achieved by a non-feature selection based option, and even the recently proposed chi-square based feature selection option.


2021 ◽  
Vol 21 (3) ◽  
pp. 1-18
Author(s):  
Mehedi Masud ◽  
Parminder Singh ◽  
Gurjot Singh Gaba ◽  
Avinash Kaur ◽  
Roobaea Alrobaea Alghamdi ◽  
...  

Edge Artificial Intelligence (AI) is the latest trend for next-generation computing for data analytics, particularly in predictive edge analytics for high-risk diseases like Parkinson’s Disease (PD). Deep learning learning techniques facilitate edge AI applications for enhanced, real-time handling of data. Dopamine is the cause of Parkinson’s that happens due to the interference of brain cells that produce the substance to regulate the communication of brain cells. The brain cells responsible for generating the dopamine perform adaptation, control, and movement with fluency. Parkinson’s motor symptoms appear on the loss of 60% to 80% of cells, due to the non-production of appropriate dopamine. Recent research found a close connection between the speech impairment and PD. Many researchers have developed a classification algorithm to identify the PD from speech signals. In this article, Adaptive Crow Search Algorithm (ACSA) and Deep Learning (DL)–based optimal feature selection method are introduced. The proposed model is the combination of CROW Search and Deep learning (CROWD) stack sparse autoencoder neural network. Parkinson’s dataset is taken for the experiment from the Irvine dataset repository at the University of California (UCI). In the first phase, dataset cleaning is performed to handle the missing values in the dataset. After that, the proposed ACSA algorithm is employed to find the scrunched feature vector. Furthermore, stack spare autoencoder with seven hidden layers is employed to generate the compressed feature vector. The performance of the proposed CROWD autoencoder model is compared with three feature selection approaches for six supervised classification techniques. The experiment result demonstrates that the performance of the proposed CROWD autoencoder feature selection model has outperformed the benchmarked feature selection techniques: (i) Maximum Relevance (mRMR) (ii) Recursive Feature Elimination (RFE), and (iii) Correlation-based Feature Selection (CFS), to classify Parkinson’s disease. This research has significance in the healthcare sector for the enhancement of classification accuracy up to 0.96%.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Shi ◽  
Youchuan Wan ◽  
Xianjun Gao ◽  
Mingwei Wang

In object-based image analysis of high-resolution images, the number of features can reach hundreds, so it is necessary to perform feature reduction prior to classification. In this paper, a feature selection method based on the combination of a genetic algorithm (GA) and tabu search (TS) is presented. The proposed GATS method aims to reduce the premature convergence of the GA by the use of TS. A prematurity index is first defined to judge the convergence situation during the search. When premature convergence does take place, an improved mutation operator is executed, in which TS is performed on individuals with higher fitness values. As for the other individuals with lower fitness values, mutation with a higher probability is carried out. Experiments using the proposed GATS feature selection method and three other methods, a standard GA, the multistart TS method, and ReliefF, were conducted on WorldView-2 and QuickBird images. The experimental results showed that the proposed method outperforms the other methods in terms of the final classification accuracy.


2009 ◽  
Vol 29 (10) ◽  
pp. 2812-2815
Author(s):  
Yang-zhu LU ◽  
Xin-you ZHANG ◽  
Yu QI

2019 ◽  
Vol 12 (4) ◽  
pp. 329-337 ◽  
Author(s):  
Venubabu Rachapudi ◽  
Golagani Lavanya Devi

Background: An efficient feature selection method for Histopathological image classification plays an important role to eliminate irrelevant and redundant features. Therefore, this paper proposes a new levy flight salp swarm optimizer based feature selection method. Methods: The proposed levy flight salp swarm optimizer based feature selection method uses the levy flight steps for each follower salp to deviate them from local optima. The best solution returns the relevant and non-redundant features, which are fed to different classifiers for efficient and robust image classification. Results: The efficiency of the proposed levy flight salp swarm optimizer has been verified on 20 benchmark functions. The anticipated scheme beats the other considered meta-heuristic approaches. Furthermore, the anticipated feature selection method has shown better reduction in SURF features than other considered methods and performed well for histopathological image classification. Conclusion: This paper proposes an efficient levy flight salp Swarm Optimizer by modifying the step size of follower salp. The proposed modification reduces the chances of sticking into local optima. Furthermore, levy flight salp Swarm Optimizer has been utilized in the selection of optimum features from SURF features for the histopathological image classification. The simulation results validate that proposed method provides optimal values and high classification performance in comparison to other methods.


Author(s):  
Fatemeh Alighardashi ◽  
Mohammad Ali Zare Chahooki

Improving the software product quality before releasing by periodic tests is one of the most expensive activities in software projects. Due to limited resources to modules test in software projects, it is important to identify fault-prone modules and use the test sources for fault prediction in these modules. Software fault predictors based on machine learning algorithms, are effective tools for identifying fault-prone modules. Extensive studies are being done in this field to find the connection between features of software modules, and their fault-prone. Some of features in predictive algorithms are ineffective and reduce the accuracy of prediction process. So, feature selection methods to increase performance of prediction models in fault-prone modules are widely used. In this study, we proposed a feature selection method for effective selection of features, by using combination of filter feature selection methods. In the proposed filter method, the combination of several filter feature selection methods presented as fused weighed filter method. Then, the proposed method caused convergence rate of feature selection as well as the accuracy improvement. The obtained results on NASA and PROMISE with ten datasets, indicates the effectiveness of proposed method in improvement of accuracy and convergence of software fault prediction.


2021 ◽  
Vol 25 (1) ◽  
pp. 21-34
Author(s):  
Rafael B. Pereira ◽  
Alexandre Plastino ◽  
Bianca Zadrozny ◽  
Luiz H.C. Merschmann

In many important application domains, such as text categorization, biomolecular analysis, scene or video classification and medical diagnosis, instances are naturally associated with more than one class label, giving rise to multi-label classification problems. This has led, in recent years, to a substantial amount of research in multi-label classification. More specifically, feature selection methods have been developed to allow the identification of relevant and informative features for multi-label classification. This work presents a new feature selection method based on the lazy feature selection paradigm and specific for the multi-label context. Experimental results show that the proposed technique is competitive when compared to multi-label feature selection techniques currently used in the literature, and is clearly more scalable, in a scenario where there is an increasing amount of data.


Sign in / Sign up

Export Citation Format

Share Document