Feature Selection for Histopathological Image Classification using levy Flight Salp Swarm Optimizer

2019 ◽  
Vol 12 (4) ◽  
pp. 329-337 ◽  
Author(s):  
Venubabu Rachapudi ◽  
Golagani Lavanya Devi

Background: An efficient feature selection method for Histopathological image classification plays an important role to eliminate irrelevant and redundant features. Therefore, this paper proposes a new levy flight salp swarm optimizer based feature selection method. Methods: The proposed levy flight salp swarm optimizer based feature selection method uses the levy flight steps for each follower salp to deviate them from local optima. The best solution returns the relevant and non-redundant features, which are fed to different classifiers for efficient and robust image classification. Results: The efficiency of the proposed levy flight salp swarm optimizer has been verified on 20 benchmark functions. The anticipated scheme beats the other considered meta-heuristic approaches. Furthermore, the anticipated feature selection method has shown better reduction in SURF features than other considered methods and performed well for histopathological image classification. Conclusion: This paper proposes an efficient levy flight salp Swarm Optimizer by modifying the step size of follower salp. The proposed modification reduces the chances of sticking into local optima. Furthermore, levy flight salp Swarm Optimizer has been utilized in the selection of optimum features from SURF features for the histopathological image classification. The simulation results validate that proposed method provides optimal values and high classification performance in comparison to other methods.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Le Wang ◽  
Yuelin Gao ◽  
Jiahang Li ◽  
Xiaofeng Wang

Feature selection is an essential step in the preprocessing of data in pattern recognition and data mining. Nowadays, the feature selection problem as an optimization problem can be solved with nature-inspired algorithm. In this paper, we propose an efficient feature selection method based on the cuckoo search algorithm called CBCSEM. The proposed method avoids the premature convergence of traditional methods and the tendency to fall into local optima, and this efficient method is attributed to three aspects. Firstly, the chaotic map increases the diversity of the initialization of the algorithm and lays the foundation for its convergence. Then, the proposed two-population elite preservation strategy can find the attractive one of each generation and preserve it. Finally, Lévy flight is developed to update the position of a cuckoo, and the proposed uniform mutation strategy avoids the trouble that the search space is too large for the convergence of the algorithm due to Lévy flight and improves the algorithm exploitation ability. The experimental results on several real UCI datasets show that the proposed method is competitive in comparison with other feature selection algorithms.


2021 ◽  
Vol 16 ◽  
Author(s):  
Chaokun Yan ◽  
Mengyuan Li ◽  
Jingjing Ma ◽  
Yi Liao ◽  
Huimin Luo ◽  
...  

Background: The massive amount of biomedical data accumulated in the past decades can be utilized for diagnosing disease. Objective: However, its high dimensionality, small sample sizes, and irrelevant features often have a negative influence on the accuracy and speed of disease prediction. Some existing machine learning models cannot capture the patterns on these datasets accurately without utilizing feature selection. Methods: Filter and wrapper are two prevailing feature selection methods. The filter method is fast but has low prediction accuracy, while the latter can obtain high accuracy but has a formidable computation cost. Given the drawbacks of using filter or wrapper individually, a novel feature selection method, called MRMR-EFPATS, is proposed, which hybridizes filter method minimum redundancy maximum relevance (MRMR) and wrapper method based on an improved flower pollination algorithm (FPA). First, MRMR is employed to rank and screen out some important features quickly. These features are further chosen into population individual of the following wrapper method for faster convergence and less computational time. Then, due to its efficiency and flexibility, FPA is adopted to further discover an optimal feature subset. Result: FPA still has some drawbacks such as slow convergence rate, inadequacy in terms of searching for new solutions, and tends to be trapped in local optima. In our work, an elite strategy is adopted to improve the convergence speed of the FPA. Tabu search and Adaptive Gaussian Mutation are employed to improve the search capability of FPA and escape from local optima. Here, the KNN classifier with the 5-fold-CV is utilized to evaluate the classification accuracy. Conclusion: Extensive experimental results on six public high dimensional biomedical datasets show that the proposed MRMR-EFPATS has achieved superior performance compared with other state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document