scholarly journals The intrinsic metrics on the circular domains in Cn

1984 ◽  
Vol 112 (1) ◽  
pp. 249-256 ◽  
Author(s):  
Masaaki Suzuki
1990 ◽  
Vol 288 (1) ◽  
pp. 473-481 ◽  
Author(s):  
Sergio Venturini

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 600
Author(s):  
Cristina Bran ◽  
Jose Angel Fernandez-Roldan ◽  
Rafael P. del Real ◽  
Agustina Asenjo ◽  
Oksana Chubykalo-Fesenko ◽  
...  

Cylindrical magnetic nanowires show great potential for 3D applications such as magnetic recording, shift registers, and logic gates, as well as in sensing architectures or biomedicine. Their cylindrical geometry leads to interesting properties of the local domain structure, leading to multifunctional responses to magnetic fields and electric currents, mechanical stresses, or thermal gradients. This review article is summarizing the work carried out in our group on the fabrication and magnetic characterization of cylindrical magnetic nanowires with modulated geometry and anisotropy. The nanowires are prepared by electrochemical methods allowing the fabrication of magnetic nanowires with precise control over geometry, morphology, and composition. Different routes to control the magnetization configuration and its dynamics through the geometry and magnetocrystalline anisotropy are presented. The diameter modulations change the typical single domain state present in cubic nanowires, providing the possibility to confine or pin circular domains or domain walls in each segment. The control and stabilization of domains and domain walls in cylindrical wires have been achieved in multisegmented structures by alternating magnetic segments of different magnetic properties (producing alternative anisotropy) or with non-magnetic layers. The results point out the relevance of the geometry and magnetocrystalline anisotropy to promote the occurrence of stable magnetochiral structures and provide further information for the design of cylindrical nanowires for multiple applications.


Author(s):  
R. G. Parker ◽  
C. D. Mote

Abstract Using perturbation analysis, the eigensolutions for plate vibration problems on nearly annular or circular domains are determined. The irregular domain eigensolutions are calculated as perturbations of the corresponding annular or circular domain eigensolutions. These perturbations are determined exactly. The simplicity of these exact solutions allows the perturbation to be carried through third order for distinct unperturbed eigenvalues and through second order for degenerate unperturbed eigenvalues. Furthermore, this simplicity allows the resulting orthonormalized eigenfunctions to be readily incorporated into response, system identification, and control analyses. The clamped, nearly circular plate is studied in detail, and the exact eigensolution perturbations are derived for an arbitrary boundary shape deviation. Rules governing the splitting of degenerate unperturbed eigenvalues at both first and second orders of perturbation are presented. These rules, which apply for arbitrary shape deviation, generalize those obtained in previous works where specific, discrete asymmetries and first order splitting are examined. The eigensolution perturbations and splitting rules reduce to simple, algebraic formulae in the Fourier coefficients of the boundary shape asymmetry. Elliptical plate eigensolutions are calculated and compared to finite element analysis and, for the fundamental eigenvalue, to the exact solution given by Shibaoka (1956).


2005 ◽  
Vol 9 (2) ◽  
pp. 137-148
Author(s):  
M. V. Dubatovskaya ◽  
S. V. Rogosin

Exact description of the Schottky groups of symmetries is given for certain special configurations of multiply connected circular domains. It is used in the representation of the solution of the Schwarz problem which is applied at the study of effective properties of composite materials. Santrauka Darbe pateiktas Schottky simetrijos grupiu apibrežimas tam tikros specialios konfiguracijos daugiajungems skritulinems sritims. Jis yra panaudotas gaunant Švarco uždavinio, kuris pritaikomas nagrinejant efektyvias kompoziciju savybes, sprendinio išraiška.


Sign in / Sign up

Export Citation Format

Share Document