scholarly journals Augmentations and rulings of Legendrian links in #k(S1× S2)

2017 ◽  
Vol 288 (2) ◽  
pp. 381-423 ◽  
Author(s):  
Caitlin Leverson
Keyword(s):  
2018 ◽  
Vol 27 (14) ◽  
pp. 1850067 ◽  
Author(s):  
Marc Kegel

We prove that every Legendrian knot in the tight contact structure of the [Formula: see text]-sphere is determined by the contactomorphism type of its exterior. Moreover, by giving counterexamples we show this to be not true for Legendrian links in the tight [Formula: see text]-sphere. On the way a new user-friendly formula for computing the Thurston–Bennequin invariant of a Legendrian knot in a surgery diagram is given.


2001 ◽  
Vol 10 (01) ◽  
pp. 1-35 ◽  
Author(s):  
RICCARDO BENEDETTI ◽  
CARLO PETRONIO

We provide combinatorial realizations, according to the usual objects/moves scheme, of the following three topological categories: (1) pairs (M, v) where M is a 3-manifold (up to diffeomorphism) and v is a (non-singular vector) field, up to homotopy; here possibly ∂M≠∅, and v may be tangent to ∂M, but only in a concave fashion, and homotopy should preserve tangency type; (2) framed links L in M, up to framed isotopy; (3) triples (M, v, L), with (M, v) as above and L transversal to v, up to pseudo-Legendrian isotopy (transverality-preserving simultaneous homotopy of v and isotopy of L). All realizations are based on the notion of branched standard spine, and build on results previously obtained, Links are encoded by means of diagrams on branched spines, where the diagram is C 1 with respect to the branching. Several motivations for being interested in combinatorial realizations of the topological categories considered in this paper are given in the introduction. The encoding of links is suitable for the comparison of the framed and the pseudo-Legendrian categories, and some applications are given in connection with contact structures, torsion and finite-order invariants. An estension of Trace's notion of winding number of a knot diagram is introduced and discussed.


2020 ◽  
pp. 1-33
Author(s):  
ALBERTO CAVALLO

Abstract We introduce a generalization of the Lisca–Ozsváth–Stipsicz–Szabó Legendrian invariant ${\mathfrak L}$ to links in every rational homology sphere, using the collapsed version of link Floer homology. We represent a Legendrian link L in a contact 3-manifold ${(M,\xi)}$ with a diagram D, given by an open book decomposition of ${(M,\xi)}$ adapted to L, and we construct a chain complex ${cCFL^-(D)}$ with a special cycle in it denoted by ${\mathfrak L(D)}$ . Then, given two diagrams ${D_1}$ and ${D_2}$ which represent Legendrian isotopic links, we prove that there is a map between the corresponding chain complexes that induces an isomorphism in homology and sends ${\mathfrak L(D_1)}$ into ${\mathfrak L(D_2)}$ . Moreover, a connected sum formula is also proved and we use it to give some applications about non-loose Legendrian links; that are links such that the restriction of ${\xi}$ on their complement is tight.


2009 ◽  
Vol 19 (5) ◽  
pp. 1320-1333 ◽  
Author(s):  
Vladimir Chernov ◽  
Stefan Nemirovski
Keyword(s):  

2019 ◽  
Vol 16 ◽  
pp. 1960-1980
Author(s):  
I. A. Dynnikov
Keyword(s):  

Author(s):  
Benjamin Bode

AbstractPersistent topological structures in physical systems have become increasingly important over the last years. Electromagnetic fields with knotted field lines play a special role among these, since they can be used to transfer their knottedness to other systems like plasmas and quantum fluids. In null electromagnetic fields the electric and the magnetic field lines evolve like unbreakable elastic filaments in a fluid flow. In particular, their topology is preserved for all time, so that all knotted closed field lines maintain their knot type. We use an approach due to Bateman to prove that for every link L there is such an electromagnetic field that satisfies Maxwell’s equations in free space and that has closed electric and magnetic field lines in the shape of L for all time. The knotted and linked field lines turn out to be projections of real analytic Legendrian links with respect to the standard contact structure on the 3-sphere.


Author(s):  
Fabian Haiden

AbstractWe compare two associative algebras which encode the “quantum topology” of Legendrian curves in contact threefolds of product type $$S\times {\mathbb {R}}$$ S × R . The first is the skein algebra of graded Legendrian links and the second is the Hall algebra of the Fukaya category of S. We construct a natural homomorphism from the former to the latter, which we show is an isomorphism if S is a disk with marked points and injective if S is the annulus.


Sign in / Sign up

Export Citation Format

Share Document