scholarly journals Sharing Risk – An Economic Perspective

2009 ◽  
Vol 39 (2) ◽  
pp. 591-613 ◽  
Author(s):  
Andreas Kull

AbstractWe revisit the relative retention problem originally introduced by de Finetti using concepts recently developed in risk theory and quantitative risk management. Instead of using the Variance as a risk measure we consider the Expected Shortfall (Tail-Value-at-Risk) and include capital costs and take constraints on risk capital into account. Starting from a risk-based capital allocation, the paper presents an optimization scheme for sharing risk in a multi-risk class environment. Risk sharing takes place between two portfolios and the pricing of risktransfer reflects both portfolio structures. This allows us to shed more light on the question of how optimal risk sharing is characterized in a situation where risk transfer takes place between parties employing similar risk and performance measures. Recent developments in the regulatory domain (‘risk-based supervision’) pushing for common, insurance industry-wide risk measures underline the importance of this question. The paper includes a simple non-life insurance example illustrating optimal risk transfer in terms of retentions of common reinsurance structures.

2006 ◽  
Vol 36 (2) ◽  
pp. 375-413
Author(s):  
Gary G. Venter ◽  
John A. Major ◽  
Rodney E. Kreps

The marginal approach to risk and return analysis compares the marginal return from a business decision to the marginal risk imposed. Allocation distributes the total company risk to business units and compares the profit/risk ratio of the units. These approaches coincide when the allocation actually assigns the marginal risk to each business unit, i.e., when the marginal impacts add up to the total risk measure. This is possible for one class of risk measures (scalable measures) under the assumption of homogeneous growth and by a subclass (transformed probability measures) otherwise. For homogeneous growth, the allocation of scalable measures can be accomplished by the directional derivative. The first well known additive marginal allocations were the Myers-Read method from Myers and Read (2001) and co-Tail Value at Risk, discussed in Tasche (2000). Now we see that there are many others, which allows the choice of risk measure to be based on economic meaning rather than the availability of an allocation method. We prefer the term “decomposition” to “allocation” here because of the use of the method of co-measures, which quantifies the component composition of a risk measure rather than allocating it proportionally to something.Risk adjusted profitability calculations that do not rely on capital allocation still may involve decomposition of risk measures. Such a case is discussed. Calculation issues for directional derivatives are also explored.


2021 ◽  
pp. 1-19
Author(s):  
Zinoviy Landsman ◽  
Tomer Shushi

Abstract In Finance and Actuarial Science, the multivariate elliptical family of distributions is a famous and well-used model for continuous risks. However, it has an essential shortcoming: all its univariate marginal distributions are the same, up to location and scale transformations. For example, all marginals of the multivariate Student’s t-distribution, an important member of the elliptical family, have the same number of degrees of freedom. We introduce a new approach to generate a multivariate distribution whose marginals are elliptical random variables, while in general, each of the risks has different elliptical distribution, which is important when dealing with insurance and financial data. The proposal is an alternative to the elliptical copula distribution where, in many cases, it is very difficult to calculate its risk measures and risk capital allocation. We study the main characteristics of the proposed model: characteristic and density functions, expectations, covariance matrices and expectation of the linear regression vector. We calculate important risk measures for the introduced distributions, such as the value at risk and tail value at risk, and the risk capital allocation of the aggregated risks.


2006 ◽  
Vol 36 (02) ◽  
pp. 375-413 ◽  
Author(s):  
Gary G. Venter ◽  
John A. Major ◽  
Rodney E. Kreps

The marginal approach to risk and return analysis compares the marginal return from a business decision to the marginal risk imposed. Allocation distributes the total company risk to business units and compares the profit/risk ratio of the units. These approaches coincide when the allocation actually assigns the marginal risk to each business unit, i.e., when the marginal impacts add up to the total risk measure. This is possible for one class of risk measures (scalable measures) under the assumption of homogeneous growth and by a subclass (transformed probability measures) otherwise. For homogeneous growth, the allocation of scalable measures can be accomplished by the directional derivative. The first well known additive marginal allocations were the Myers-Read method from Myers and Read (2001) and co-Tail Value at Risk, discussed in Tasche (2000). Now we see that there are many others, which allows the choice of risk measure to be based on economic meaning rather than the availability of an allocation method. We prefer the term “decomposition” to “allocation” here because of the use of the method of co-measures, which quantifies the component composition of a risk measure rather than allocating it proportionally to something. Risk adjusted profitability calculations that do not rely on capital allocation still may involve decomposition of risk measures. Such a case is discussed. Calculation issues for directional derivatives are also explored.


Author(s):  
Joachim Paulusch

The core of risk aggregation in the Solvency II Standard Formula is the so-called square root formula. We argue that it should be seen as a means for the aggregation of different risks to an overall risk rather than being associated with variance-covariance based risk analysis. Considering the Solvency II Standard Formula from the viewpoint of linear geometry, we immediately find that it defines a norm and therefore provides a homogeneous and sub-additive tool for risk aggregation. Hence Euler's Principle for the reallocation of risk capital applies and yields explicit formulas for capital allocation in the framework given by the Solvency II Standard Formula. This gives rise to the definition of  diversification functions, which we define as monotone, subadditive, and homogeneous functions on a convex cone. Diversification functions constitute a class of models for the study of the aggregation of risk, and diversification. The aggregation of risk measures using a diversification function preserves the respective properties of these risk measures. Examples of diversification functions are given by seminorms, which are monotone on the convex cone of non-negative vectors. Each Lp norm has this property, and any scalar product given by a non-negative positive semidefinite matrix does as well. In particular, the Standard Formula is a diversification function and hence a risk measure that preserves homogeneity, subadditivity, and convexity.


2020 ◽  
Vol 50 (2) ◽  
pp. 647-673
Author(s):  
Haiyan Liu

AbstractWe study a weighted comonotonic risk-sharing problem among multiple agents with distortion risk measures under heterogeneous beliefs. The explicit forms of optimal allocations are obtained, which are Pareto-optimal. A necessary and sufficient condition is given to ensure the uniqueness of the optimal allocation, and sufficient conditions are given to obtain an optimal allocation of the form of excess of loss or full insurance. The optimal allocation may satisfy individual rationality depending on the choice of the weight. When the distortion risk measure is value at risk or tail value at risk, an optimal allocation is generally of the excess-of-loss form. The numerical examples suggest that a risk is more likely to be shared among agents with heterogeneous beliefs, and the introduction of the weight enables us to prioritize some agents as part of a group sharing a risk.


2017 ◽  
Vol 20 (07) ◽  
pp. 1750047 ◽  
Author(s):  
EDUARD KROMER ◽  
LUDGER OVERBECK

Capital allocations have been studied in conjunction with static risk measures in various papers. The dynamic case has been studied only in a discrete-time setting. We address the problem of allocating risk capital to subportfolios for the first time in a continuous-time dynamic context. For this purpose, we introduce a differentiability result for backward stochastic Volterra integral equations and apply this result to derive continuous-time dynamic capital allocations. Moreover, we study a dynamic capital allocation principle that is based on backward stochastic differential equations and derive the dynamic gradient allocation for the dynamic entropic risk measure.


2021 ◽  
Vol 14 (5) ◽  
pp. 201
Author(s):  
Yuan Hu ◽  
W. Brent Lindquist ◽  
Svetlozar T. Rachev

This paper investigates performance attribution measures as a basis for constraining portfolio optimization. We employ optimizations that minimize conditional value-at-risk and investigate two performance attributes, asset allocation (AA) and the selection effect (SE), as constraints on asset weights. The test portfolio consists of stocks from the Dow Jones Industrial Average index. Values for the performance attributes are established relative to two benchmarks, equi-weighted and price-weighted portfolios of the same stocks. Performance of the optimized portfolios is judged using comparisons of cumulative price and the risk-measures: maximum drawdown, Sharpe ratio, Sortino–Satchell ratio and Rachev ratio. The results suggest that achieving SE performance thresholds requires larger turnover values than that required for achieving comparable AA thresholds. The results also suggest a positive role in price and risk-measure performance for the imposition of constraints on AA and SE.


2019 ◽  
Vol 34 (2) ◽  
pp. 297-315
Author(s):  
Linxiao Wei ◽  
Yijun Hu

AbstractCapital allocation is of central importance in portfolio management and risk-based performance measurement. Capital allocations for univariate risk measures have been extensively studied in the finance literature. In contrast to this situation, few papers dealt with capital allocations for multivariate risk measures. In this paper, we propose an axiom system for capital allocation with multivariate risk measures. We first recall the class of the positively homogeneous and subadditive multivariate risk measures, and provide the corresponding representation results. Then it is shown that for a given positively homogeneous and subadditive multivariate risk measure, there exists a capital allocation principle. Furthermore, the uniqueness of the capital allocation principe is characterized. Finally, examples are also given to derive the explicit capital allocation principles for the multivariate risk measures based on mean and standard deviation, including the multivariate mean-standard-deviation risk measures.


2021 ◽  
Vol 14 (11) ◽  
pp. 540
Author(s):  
Eyden Samunderu ◽  
Yvonne T. Murahwa

Developments in the world of finance have led the authors to assess the adequacy of using the normal distribution assumptions alone in measuring risk. Cushioning against risk has always created a plethora of complexities and challenges; hence, this paper attempts to analyse statistical properties of various risk measures in a not normal distribution and provide a financial blueprint on how to manage risk. It is assumed that using old assumptions of normality alone in a distribution is not as accurate, which has led to the use of models that do not give accurate risk measures. Our empirical design of study firstly examined an overview of the use of returns in measuring risk and an assessment of the current financial environment. As an alternative to conventional measures, our paper employs a mosaic of risk techniques in order to ascertain the fact that there is no one universal risk measure. The next step involved looking at the current risk proxy measures adopted, such as the Gaussian-based, value at risk (VaR) measure. Furthermore, the authors analysed multiple alternative approaches that do not take into account the normality assumption, such as other variations of VaR, as well as econometric models that can be used in risk measurement and forecasting. Value at risk (VaR) is a widely used measure of financial risk, which provides a way of quantifying and managing the risk of a portfolio. Arguably, VaR represents the most important tool for evaluating market risk as one of the several threats to the global financial system. Upon carrying out an extensive literature review, a data set was applied which was composed of three main asset classes: bonds, equities and hedge funds. The first part was to determine to what extent returns are not normally distributed. After testing the hypothesis, it was found that the majority of returns are not normally distributed but instead exhibit skewness and kurtosis greater or less than three. The study then applied various VaR methods to measure risk in order to determine the most efficient ones. Different timelines were used to carry out stressed value at risks, and it was seen that during periods of crisis, the volatility of asset returns was higher. The other steps that followed examined the relationship of the variables, correlation tests and time series analysis conducted and led to the forecasting of the returns. It was noted that these methods could not be used in isolation. We adopted the use of a mosaic of all the methods from the VaR measures, which included studying the behaviour and relation of assets with each other. Furthermore, we also examined the environment as a whole, then applied forecasting models to accurately value returns; this gave a much more accurate and relevant risk measure as compared to the initial assumption of normality.


2012 ◽  
Vol 3 (1) ◽  
pp. 150-157 ◽  
Author(s):  
Suresh Andrew Sethi ◽  
Mike Dalton

Abstract Traditional measures that quantify variation in natural resource systems include both upside and downside deviations as contributing to variability, such as standard deviation or the coefficient of variation. Here we introduce three risk measures from investment theory, which quantify variability in natural resource systems by analyzing either upside or downside outcomes and typical or extreme outcomes separately: semideviation, conditional value-at-risk, and probability of ruin. Risk measures can be custom tailored to frame variability as a performance measure in terms directly meaningful to specific management objectives, such as presenting risk as harvest expected in an extreme bad year, or by characterizing risk as the probability of fishery escapement falling below a prescribed threshold. In this paper, we present formulae, empirical examples from commercial fisheries, and R code to calculate three risk measures. In addition, we evaluated risk measure performance with simulated data, and we found that risk measures can provide unbiased estimates at small sample sizes. By decomposing complex variability into quantitative metrics, we envision risk measures to be useful across a range of wildlife management scenarios, including policy decision analyses, comparative analyses across systems, and tracking the state of natural resource systems through time.


Sign in / Sign up

Export Citation Format

Share Document