scholarly journals The Solvency II Standard Formula, Linear Geometry, and Diversification

Author(s):  
Joachim Paulusch

The core of risk aggregation in the Solvency II Standard Formula is the so-called square root formula. We argue that it should be seen as a means for the aggregation of different risks to an overall risk rather than being associated with variance-covariance based risk analysis. Considering the Solvency II Standard Formula from the viewpoint of linear geometry, we immediately find that it defines a norm and therefore provides a homogeneous and sub-additive tool for risk aggregation. Hence Euler's Principle for the reallocation of risk capital applies and yields explicit formulas for capital allocation in the framework given by the Solvency II Standard Formula. This gives rise to the definition of  diversification functions, which we define as monotone, subadditive, and homogeneous functions on a convex cone. Diversification functions constitute a class of models for the study of the aggregation of risk, and diversification. The aggregation of risk measures using a diversification function preserves the respective properties of these risk measures. Examples of diversification functions are given by seminorms, which are monotone on the convex cone of non-negative vectors. Each Lp norm has this property, and any scalar product given by a non-negative positive semidefinite matrix does as well. In particular, the Standard Formula is a diversification function and hence a risk measure that preserves homogeneity, subadditivity, and convexity.

Author(s):  
Joachim Paulusch

We introduce the notions of monotony, subadditivity, and homogeneity for functions defined on a convex cone, call functions with these properties diversification functions and obtain the respective properties for the risk aggregation given by such a function. Examples of diversification functions are given by seminorms, which are monotone on the convex cone of non-negative vectors. Any Lp norm has this property, and any scalar product given by a non-negative positive semidefinite matrix as well. In particular, the Standard Formula is a diversification function, hence a risk measure that preserves homogeneity, subadditivity, and convexity.


2009 ◽  
Vol 39 (2) ◽  
pp. 591-613 ◽  
Author(s):  
Andreas Kull

AbstractWe revisit the relative retention problem originally introduced by de Finetti using concepts recently developed in risk theory and quantitative risk management. Instead of using the Variance as a risk measure we consider the Expected Shortfall (Tail-Value-at-Risk) and include capital costs and take constraints on risk capital into account. Starting from a risk-based capital allocation, the paper presents an optimization scheme for sharing risk in a multi-risk class environment. Risk sharing takes place between two portfolios and the pricing of risktransfer reflects both portfolio structures. This allows us to shed more light on the question of how optimal risk sharing is characterized in a situation where risk transfer takes place between parties employing similar risk and performance measures. Recent developments in the regulatory domain (‘risk-based supervision’) pushing for common, insurance industry-wide risk measures underline the importance of this question. The paper includes a simple non-life insurance example illustrating optimal risk transfer in terms of retentions of common reinsurance structures.


2017 ◽  
Vol 20 (07) ◽  
pp. 1750047 ◽  
Author(s):  
EDUARD KROMER ◽  
LUDGER OVERBECK

Capital allocations have been studied in conjunction with static risk measures in various papers. The dynamic case has been studied only in a discrete-time setting. We address the problem of allocating risk capital to subportfolios for the first time in a continuous-time dynamic context. For this purpose, we introduce a differentiability result for backward stochastic Volterra integral equations and apply this result to derive continuous-time dynamic capital allocations. Moreover, we study a dynamic capital allocation principle that is based on backward stochastic differential equations and derive the dynamic gradient allocation for the dynamic entropic risk measure.


2019 ◽  
Vol 34 (2) ◽  
pp. 297-315
Author(s):  
Linxiao Wei ◽  
Yijun Hu

AbstractCapital allocation is of central importance in portfolio management and risk-based performance measurement. Capital allocations for univariate risk measures have been extensively studied in the finance literature. In contrast to this situation, few papers dealt with capital allocations for multivariate risk measures. In this paper, we propose an axiom system for capital allocation with multivariate risk measures. We first recall the class of the positively homogeneous and subadditive multivariate risk measures, and provide the corresponding representation results. Then it is shown that for a given positively homogeneous and subadditive multivariate risk measure, there exists a capital allocation principle. Furthermore, the uniqueness of the capital allocation principe is characterized. Finally, examples are also given to derive the explicit capital allocation principles for the multivariate risk measures based on mean and standard deviation, including the multivariate mean-standard-deviation risk measures.


2020 ◽  
Vol 23 (01) ◽  
pp. 2050009
Author(s):  
FRANCESCA CENTRONE ◽  
EMANUELA ROSAZZA GIANIN

We introduce the definition of set-valued capital allocation rule, in the context of set-valued risk measures. In analogy to some well known methods for the scalar case based on the idea of marginal contribution and hence on the notion of gradient and sub-gradient of a risk measure, and under some reasonable assumptions, we define some set-valued capital allocation rules relying on the representation theorems for coherent and convex set-valued risk measures and investigate their link with the notion of sub-differential for set-valued functions. We also introduce and study the set-valued analogous of some properties of classical capital allocation rules, such as the one of no undercut. Furthermore, we compare these rules with some of those mostly used for univariate (single-valued) risk measures. Examples and comparisons with the scalar case are provided at the end.


2006 ◽  
Vol 36 (2) ◽  
pp. 375-413
Author(s):  
Gary G. Venter ◽  
John A. Major ◽  
Rodney E. Kreps

The marginal approach to risk and return analysis compares the marginal return from a business decision to the marginal risk imposed. Allocation distributes the total company risk to business units and compares the profit/risk ratio of the units. These approaches coincide when the allocation actually assigns the marginal risk to each business unit, i.e., when the marginal impacts add up to the total risk measure. This is possible for one class of risk measures (scalable measures) under the assumption of homogeneous growth and by a subclass (transformed probability measures) otherwise. For homogeneous growth, the allocation of scalable measures can be accomplished by the directional derivative. The first well known additive marginal allocations were the Myers-Read method from Myers and Read (2001) and co-Tail Value at Risk, discussed in Tasche (2000). Now we see that there are many others, which allows the choice of risk measure to be based on economic meaning rather than the availability of an allocation method. We prefer the term “decomposition” to “allocation” here because of the use of the method of co-measures, which quantifies the component composition of a risk measure rather than allocating it proportionally to something.Risk adjusted profitability calculations that do not rely on capital allocation still may involve decomposition of risk measures. Such a case is discussed. Calculation issues for directional derivatives are also explored.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Silvana M. Pesenti ◽  
Pietro Millossovich ◽  
Andreas Tsanakas

AbstractOne of risk measures’ key purposes is to consistently rank and distinguish between different risk profiles. From a practical perspective, a risk measure should also be robust, that is, insensitive to small perturbations in input assumptions. It is known in the literature [14, 39], that strong assumptions on the risk measure’s ability to distinguish between risks may lead to a lack of robustness. We address the trade-off between robustness and consistent risk ranking by specifying the regions in the space of distribution functions, where law-invariant convex risk measures are indeed robust. Examples include the set of random variables with bounded second moment and those that are less volatile (in convex order) than random variables in a given uniformly integrable set. Typically, a risk measure is evaluated on the output of an aggregation function defined on a set of random input vectors. Extending the definition of robustness to this setting, we find that law-invariant convex risk measures are robust for any aggregation function that satisfies a linear growth condition in the tail, provided that the set of possible marginals is uniformly integrable. Thus, we obtain that all law-invariant convex risk measures possess the aggregation-robustness property introduced by [26] and further studied by [40]. This is in contrast to the widely-used, non-convex, risk measure Value-at-Risk, whose robustness in a risk aggregation context requires restricting the possible dependence structures of the input vectors.


Author(s):  
Fangda Liu ◽  
Ruodu Wang

The notion of “tail risk” has been a crucial consideration in modern risk management and financial regulation, as very well documented in the recent regulatory documents. To achieve a comprehensive understanding of the tail risk, we carry out an axiomatic study for risk measures that quantify the tail risk, that is, the behaviour of a risk beyond a certain quantile. Such risk measures are referred to as tail risk measures in this paper. The two popular classes of regulatory risk measures in banking and insurance, value at risk (VaR) and expected shortfall, are prominent, yet elementary, examples of tail risk measures. We establish a connection between a tail risk measure and a corresponding law-invariant risk measure, called its generator, and investigate their joint properties. A tail risk measure inherits many properties from its generator, but not subadditivity or convexity; nevertheless, a tail risk measure is coherent if and only if its generator is coherent. We explore further relevant issues on tail risk measures, such as bounds, distortion risk measures, risk aggregation, elicitability, and dual representations. In particular, there is no elicitable tail convex risk measure other than the essential supremum, and under a continuity condition, the only elicitable and positively homogeneous monetary tail risk measures are the VaRs.


2020 ◽  
Vol 37 (1-2) ◽  
pp. 1-24
Author(s):  
Tomasz R. Bielecki ◽  
Igor Cialenco ◽  
Marcin Pitera ◽  
Thorsten Schmidt

AbstractIn this paper, we develop a novel methodology for estimation of risk capital allocation. The methodology is rooted in the theory of risk measures. We work within a general, but tractable class of law-invariant coherent risk measures, with a particular focus on expected shortfall. We introduce the concept of fair capital allocations and provide explicit formulae for fair capital allocations in case when the constituents of the risky portfolio are jointly normally distributed. The main focus of the paper is on the problem of approximating fair portfolio allocations in the case of not fully known law of the portfolio constituents. We define and study the concepts of fair allocation estimators and asymptotically fair allocation estimators. A substantial part of our study is devoted to the problem of estimating fair risk allocations for expected shortfall. We study this problem under normality as well as in a nonparametric setup. We derive several estimators, and prove their fairness and/or asymptotic fairness. Last, but not least, we propose two backtesting methodologies that are oriented at assessing the performance of the allocation estimation procedure. The paper closes with a substantial numerical study of the subject and an application to market data.


Sign in / Sign up

Export Citation Format

Share Document