Multi-Channel Block-Online Source Extraction Based on Utterance Adaptation

Author(s):  
Juan M. Martín-Doñas ◽  
Jens Heitkaemper ◽  
Reinhold Haeb-Umbach ◽  
Angel M. Gomez ◽  
Antonio M. Peinado
2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
Y.P Song ◽  
F Schlesinger ◽  
S Petri ◽  
R Dengler ◽  
K Krampfl

2021 ◽  
Vol 22 (15) ◽  
pp. 8091
Author(s):  
Grace Jang ◽  
M. Bruce MacIver

Ketamine is a clinical anesthetic and antidepressant. Although ketamine is a known NMDA receptor antagonist, the mechanisms contributing to antidepression are unclear. This present study examined the loci and duration of ketamine’s actions, and the involvement of NMDA receptors. Local field potentials were recorded from the CA1 region of mouse hippocampal slices. Ketamine was tested at antidepressant and anesthetic concentrations. Effects of NMDA receptor antagonists APV and MK-801, GABA receptor antagonist bicuculline, and a potassium channel blocker TEA were also studied. Ketamine decreased population spike amplitudes during application, but a long-lasting increase in amplitudes was seen during washout. Bicuculline reversed the acute effects of ketamine, but the washout increase was not altered. This long-term increase was statistically significant, sustained for >2 h, and involved postsynaptic mechanisms. A similar effect was produced by MK-801, but was only partially evident with APV, demonstrating the importance of the NMDA receptor ion channel block. TEA also produced a lasting excitability increase, indicating a possible involvement of potassium channel block. This is this first report of a long-lasting increase in excitability following ketamine exposure. These results support a growing literature that increased GABA inhibition contributes to ketamine anesthesia, while increased excitatory transmission contributes to its antidepressant effects.


RSC Advances ◽  
2021 ◽  
Vol 11 (39) ◽  
pp. 24387-24397
Author(s):  
Shamshad Ul Haq ◽  
Maryam Aghajamali ◽  
Hassan Hassanzadeh

In this work, we studied the effect of different factors such as anthocyanin source, extraction technique, and extracting solvent on the sensitivity and optical visibility of anthocyanin-based paper sensors.


1980 ◽  
Vol 385 (2) ◽  
pp. 175-179 ◽  
Author(s):  
T. F. McDonald ◽  
D. Pelzer ◽  
W. Trautwein

Sign in / Sign up

Export Citation Format

Share Document