Correlation length of the one-dimensional Bose gas

1985 ◽  
Vol 111 (8-9) ◽  
pp. 419-422 ◽  
Author(s):  
N.M. Bogoliubov ◽  
V.E. Korepin
1985 ◽  
Vol 257 ◽  
pp. 766-778 ◽  
Author(s):  
N.M. Bogoliubov ◽  
V.E. Korepin

2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Jacopo De Nardis ◽  
Milosz Panfil ◽  
Andrea Gambassi ◽  
Leticia Cugliandolo ◽  
Robert Konik ◽  
...  

Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrable Hamiltonian. At late times these systems are locally described by a generalized Gibbs ensemble with as many effective temperatures as their local conserved quantities. The experimental measurement of this macroscopic number of temperatures remains elusive. Here we show that they can be obtained for the Bose gas in one spatial dimension by probing the dynamical structure factor of the system after the quench and by employing a generalized fluctuation-dissipation theorem that we provide. Our procedure allows us to completely reconstruct the stationary state of a quantum integrable system from state-of-the-art experimental observations.


2002 ◽  
Vol 12 (9) ◽  
pp. 323-324
Author(s):  
D. Le Bolloc'h ◽  
S. Ravy ◽  
P. Senzier ◽  
C. Pasquier ◽  
C. Detlefs

The correlation length of the charge density wave ordering in Rb0.3, MoO, has been studied by x-ray diffraction under electric field applied along the one-dimensional axis. The (10, 0.25, -5.5) satellite reflection has been measured in 3D, using high Q-resolution available at the ESRF. Under electrical field, the satellite reaches two stable positions depending on the temperature. It can switch from one to another as a function of the temperature and the current with very long relaxation times ($\rm 10^{th}$ of minutes). After several cycling with T and E, the satellite reflection is found to shift in the 3 main directions. The width of the satellite is reduced by a factor of two in the k-direction and an increase of the transverse correlation length is observed in the two others: the ordered domains look elongated, reaching until 5000 Å in the direction of the applied field and around 1OOO Å, in the perpendicular directions.


2019 ◽  
Vol 99 (4) ◽  
Author(s):  
Sophie S. Shamailov ◽  
Joachim Brand

1997 ◽  
Vol 12 (29) ◽  
pp. 2153-2159 ◽  
Author(s):  
Milena Maule ◽  
Stefano Sciuto

We show that the low-lying excitations of the one-dimensional Bose gas are described, at all orders in a 1/N expansion and at the first order in the inverse of the coupling constant, by an effective Hamiltonian written in terms of an extended conformal algebra, namely the Cartan subalgebra of the [Formula: see text] algebra. This enables us to construct the first interaction term which corrects the Hamiltonian of the free fermions equivalent to a hard-core boson system.


2011 ◽  
Vol 7 (1) ◽  
pp. 54-71 ◽  
Author(s):  
Alexander Yu. Cherny ◽  
Jean-Sébastien Caux ◽  
Joachim Brand
Keyword(s):  
Bose Gas ◽  

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Lorenzo Piroli ◽  
Pasquale Calabrese ◽  
Fabian Essler

We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function g_2g2.


Sign in / Sign up

Export Citation Format

Share Document