scholarly journals Freezing In with lepton flavored fermions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giancarlo D'Ambrosio ◽  
Shiuli Chatterjee ◽  
Ranjan Laha ◽  
Sudhir Kumar Vempati

Dark, chiral fermions carrying lepton flavor quantum numbers are natural candidates for freeze-in. Small couplings with the Standard Model fermions of the order of lepton Yukawas are `automatic' in the limit of Minimal Flavor Violation. In the absence of total lepton number violating interactions, particles with certain representations under the flavor group remain absolutely stable. For masses in the GeV-TeV range, the simplest model with three flavors, leads to signals at future direct detection experiments like DARWIN. Interestingly, freeze-in with a smaller flavor group such as SU(2) is already being probed by XENON1T.

2014 ◽  
Vol 29 (23) ◽  
pp. 1450123 ◽  
Author(s):  
Hai-Bin Zhang ◽  
Tai-Fu Feng ◽  
Shu-Min Zhao ◽  
Fei Sun

The μνSSM, one of supersymmetric extensions of the Standard Model, introduces three right-handed neutrino superfields to solve the μ problem and violates lepton number. Within framework of the μνSSM, we investigate the lepton flavor violating (LFV) processes [Formula: see text] with slepton flavor mixing. Simultaneously, we consider the LFV processes [Formula: see text] and muon conversion to electron in nuclei.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Stefan Antusch ◽  
A. Hammad ◽  
Ahmed Rashed

Abstract We investigate the sensitivity of electron-proton (ep) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the effective coupling to a neutral gauge boson or a neutral scalar field. For the photon, the Z boson and the Higgs particle of the Standard Model, we present the sensitivities of the LHeC for the coefficients of the effective operators, calculated from an analysis at the reconstructed level. As an example model where such flavor changing neutral current (FCNC) operators are generated at loop level, we consider the extension of the Standard Model by sterile neutrinos. We show that the LHeC could already probe the LFV conversion of an electron into a muon beyond the current experimental bounds, and could reach more than an order of magnitude higher sensitivity than the present limits for LFV conversion of an electron into a tau. We discuss that the high sensitivities are possible because the converted charged lepton is dominantly emitted in the backward direction, enabling an efficient separation of the signal from the background.


2003 ◽  
Vol 18 (16) ◽  
pp. 2769-2778
Author(s):  
Graham D. Kribs

I explain the theoretical connection between lepton flavor violation and muon g - 2 in supersymmetry1. Given any central value deviation of muon g - 2 from the standard model that is assumed to be due to weak scale supersymmetry, I show that stringent bounds on lepton flavor violating scalar masses can be extracted. These bounds are essentially independent of supersymmetric parameter space. I then briefly compare this indirect handle on supersymmetric lepton flavor violation with direct observation at a future lepton collider operating in the e- e- mode. This is a summary of a talk given at e- e-01: 4th International Workshop on Electron-Electron Interactions at TeV Energies.


2006 ◽  
Vol 21 (27) ◽  
pp. 5652-5659 ◽  
Author(s):  
ANTONIO PICH

Precise measurements of the τ lepton properties provide stringent tests of the Standard Model structure and accurate determinations of its parameters. We overview the present status of a few selected topics: lepton universality, QCD tests and the determination of αs, msand |Vus| from hadronic τ decays, and lepton flavor violation phenomena.


2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
A. Vicente

Most extensions of the Standard Model lepton sector predict large lepton flavor violating rates. Given the promising experimental perspectives for lepton flavor violation in the next few years, this generic expectation might offer a powerful indirect probe to look for new physics. In this review we will cover several aspects of lepton flavor violation in supersymmetric models beyond the Minimal Supersymmetric Standard Model. In particular, we will concentrate on three different scenarios: high-scale and low-scale seesaw models as well as models withR-parity violation. We will see that in some cases the LFV phenomenology can have characteristic features for specific scenarios, implying that dedicated studies must be performed in order to correctly understand the phenomenology in nonminimal supersymmetric models.


2018 ◽  
Vol 33 (36) ◽  
pp. 1850214
Author(s):  
Ke-Sheng Sun ◽  
Xiu-Yi Yang

Taking account of the constraint from radiative two-body decays [Formula: see text], we investigate the lepton flavor violation decays [Formula: see text] in the framework of the minimal extension of the Standard Model with one neutral singlet scalar. The couplings [Formula: see text], [Formula: see text] and [Formula: see text] between the different generation leptons and scalar [Formula: see text] are constrained by the current bounds of [Formula: see text]. The numerical results show that the theoretical prediction of [Formula: see text] strongly depends on the couplings [Formula: see text] ([Formula: see text] or [Formula: see text]) between down-type quarks and new scalar. The contributions from couplings [Formula: see text], [Formula: see text] and [Formula: see text] between up-type quark and new scalar are less dominant.


2012 ◽  
Vol 27 (40) ◽  
pp. 1250230
Author(s):  
JING YANG ◽  
KE-SHENG SUN

In the minimal supersymmetric extension of the Standard Model (MSSM) the interactions between the SUSY particles and the Standard Model (SM) particles can contribute to the lepton flavor violation (LFV) decays of vector mesons at loop level. Taking the constraint on the lightest Higgs mass around 126 GeV, we study these decays by a scan over the parameter space which gives the predictions on μ-e conversion and τ→μγ satisfying the experimental bounds. The branching ratios of the vector mesons decays into eμ are strongly suppressed. However, the branching ratios of the heavy flavor mesons decays into τμ can reach the experimental sensitivity in near future. Therefore, the experimental signals of these decays may serve as a probe of the MSSM.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
P. V. Dong ◽  
V. T. N. Huyen ◽  
H. N. Long ◽  
H. V. Thuy

The mixing among gauge bosons in the 3-3-1 models with the discrete symmetries is investigated. To get tribimaximal neutrino mixing, we have to introduce sextets containing neutral scalar components with lepton numberL=1,2. Assignation of VEVs to these fields leads to the mixing of the new gauge bosons and those in the standard model. The mixing in the charged gauge bosons leads to the lepton number violating interactions of theWboson. The same situation happens in the neutral gauge boson sector.


Sign in / Sign up

Export Citation Format

Share Document