scholarly journals Searching for charged lepton flavor violation at ep colliders

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Stefan Antusch ◽  
A. Hammad ◽  
Ahmed Rashed

Abstract We investigate the sensitivity of electron-proton (ep) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the effective coupling to a neutral gauge boson or a neutral scalar field. For the photon, the Z boson and the Higgs particle of the Standard Model, we present the sensitivities of the LHeC for the coefficients of the effective operators, calculated from an analysis at the reconstructed level. As an example model where such flavor changing neutral current (FCNC) operators are generated at loop level, we consider the extension of the Standard Model by sterile neutrinos. We show that the LHeC could already probe the LFV conversion of an electron into a muon beyond the current experimental bounds, and could reach more than an order of magnitude higher sensitivity than the present limits for LFV conversion of an electron into a tau. We discuss that the high sensitivities are possible because the converted charged lepton is dominantly emitted in the backward direction, enabling an efficient separation of the signal from the background.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
◽  
K. Uno ◽  
K. Hayasaka ◽  
K. Inami ◽  
I. Adachi ◽  
...  

Abstract Charged lepton flavor violation is forbidden in the Standard Model but possible in several new physics scenarios. In many of these models, the radiative decays τ± → ℓ±γ (ℓ = e, μ) are predicted to have a sizeable probability, making them particularly interesting channels to search at various experiments. An updated search via τ± → ℓ±γ using full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb−1, is reported for charged lepton flavor violation. No significant excess over background predictions from the Standard Model is observed, and the upper limits on the branching fractions, $$ \mathcal{B} $$ B (τ± → μ±γ) ≤ 4.2 × 10−8 and $$ \mathcal{B} $$ B (τ± → e±γ) ≤ 5.6 × 10−8, are set at 90% confidence level.


2003 ◽  
Vol 18 (16) ◽  
pp. 2769-2778
Author(s):  
Graham D. Kribs

I explain the theoretical connection between lepton flavor violation and muon g - 2 in supersymmetry1. Given any central value deviation of muon g - 2 from the standard model that is assumed to be due to weak scale supersymmetry, I show that stringent bounds on lepton flavor violating scalar masses can be extracted. These bounds are essentially independent of supersymmetric parameter space. I then briefly compare this indirect handle on supersymmetric lepton flavor violation with direct observation at a future lepton collider operating in the e- e- mode. This is a summary of a talk given at e- e-01: 4th International Workshop on Electron-Electron Interactions at TeV Energies.


2006 ◽  
Vol 21 (27) ◽  
pp. 5652-5659 ◽  
Author(s):  
ANTONIO PICH

Precise measurements of the τ lepton properties provide stringent tests of the Standard Model structure and accurate determinations of its parameters. We overview the present status of a few selected topics: lepton universality, QCD tests and the determination of αs, msand |Vus| from hadronic τ decays, and lepton flavor violation phenomena.


2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
A. Vicente

Most extensions of the Standard Model lepton sector predict large lepton flavor violating rates. Given the promising experimental perspectives for lepton flavor violation in the next few years, this generic expectation might offer a powerful indirect probe to look for new physics. In this review we will cover several aspects of lepton flavor violation in supersymmetric models beyond the Minimal Supersymmetric Standard Model. In particular, we will concentrate on three different scenarios: high-scale and low-scale seesaw models as well as models withR-parity violation. We will see that in some cases the LFV phenomenology can have characteristic features for specific scenarios, implying that dedicated studies must be performed in order to correctly understand the phenomenology in nonminimal supersymmetric models.


2018 ◽  
Vol 33 (36) ◽  
pp. 1850214
Author(s):  
Ke-Sheng Sun ◽  
Xiu-Yi Yang

Taking account of the constraint from radiative two-body decays [Formula: see text], we investigate the lepton flavor violation decays [Formula: see text] in the framework of the minimal extension of the Standard Model with one neutral singlet scalar. The couplings [Formula: see text], [Formula: see text] and [Formula: see text] between the different generation leptons and scalar [Formula: see text] are constrained by the current bounds of [Formula: see text]. The numerical results show that the theoretical prediction of [Formula: see text] strongly depends on the couplings [Formula: see text] ([Formula: see text] or [Formula: see text]) between down-type quarks and new scalar. The contributions from couplings [Formula: see text], [Formula: see text] and [Formula: see text] between up-type quark and new scalar are less dominant.


2012 ◽  
Vol 27 (40) ◽  
pp. 1250230
Author(s):  
JING YANG ◽  
KE-SHENG SUN

In the minimal supersymmetric extension of the Standard Model (MSSM) the interactions between the SUSY particles and the Standard Model (SM) particles can contribute to the lepton flavor violation (LFV) decays of vector mesons at loop level. Taking the constraint on the lightest Higgs mass around 126 GeV, we study these decays by a scan over the parameter space which gives the predictions on μ-e conversion and τ→μγ satisfying the experimental bounds. The branching ratios of the vector mesons decays into eμ are strongly suppressed. However, the branching ratios of the heavy flavor mesons decays into τμ can reach the experimental sensitivity in near future. Therefore, the experimental signals of these decays may serve as a probe of the MSSM.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Manoel M. Ferreira ◽  
Tessio B. de Melo ◽  
Sergey Kovalenko ◽  
Paulo R. D. Pinheiro ◽  
Farinaldo S. Queiroz

AbstractNeutrinos are massless in the Standard Model. The most popular mechanism to generate neutrino masses are the type I and type II seesaw, where right-handed neutrinos and a scalar triplet are augmented to the Standard Model, respectively. In this work, we discuss a model where a type I + II seesaw mechanism naturally arises via spontaneous symmetry breaking of an enlarged gauge group. Lepton flavor violation is a common feature in such setup and for this reason, we compute the model contribution to the $$\mu \rightarrow e\gamma $$μ→eγ and $$\mu \rightarrow 3e$$μ→3e decays. Moreover, we explore the connection between the neutrino mass ordering and lepton flavor violation in perspective with the LHC, HL-LHC and HE-LHC sensitivities to the doubly charged scalar stemming from the Higgs triplet. Our results explicitly show the importance of searching for signs of lepton flavor violation in collider and muon decays. The conclusion about which probe yields stronger bounds depends strongly on the mass ordering adopted, the absolute neutrino masses and which much decay one considers. In the 1–5 TeV mass region of the doubly charged scalar, lepton flavor violation experiments and colliders offer orthogonal and complementary probes. Thus if a signal is observed in one of the two new physics searches, the other will be able to assess whether it stems from a seesaw framework.


Sign in / Sign up

Export Citation Format

Share Document