scholarly journals Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_{n})$

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Arthur Hutsalyuk ◽  
Andrii Liashyk ◽  
Stanislav Pakuliak ◽  
Eric Ragoucy ◽  
Nikita Slavnov

We obtain recursion formulas for the Bethe vectors of models with periodic boundary conditions solvable by the nested algebraic Bethe ansatz and based on the quantum affine algebra \uqgl{m}. We also present a sum formula for their scalar products. This formula describes the scalar product in terms of a sum over partitions of the Bethe parameters, whose factors are characterized by two highest coefficients. We provide different recursions for these highest coefficients.In addition, we show that when the Bethe vectors are on-shell, their norm takes the form of a Gaudin determinant.

2000 ◽  
Vol 15 (21) ◽  
pp. 3395-3425 ◽  
Author(s):  
R. C. T. GHIOTTO ◽  
A. L. MALVEZZI

We solve the spectrum of quantum spin chains based on representations of the Temperley–Lieb algebra associated with the quantum groups [Formula: see text] for Xn=A1, Bn, Cn and Dn. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, break quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.


1996 ◽  
Vol 10 (21) ◽  
pp. 2639-2650
Author(s):  
HONGWEI ZHAO ◽  
WU-MING LIU ◽  
YUPENG WANG ◽  
FU-CHO PU

The exact eigenstates of the Hamiltonian for a quantum three wave interaction system are constructed by using the Bethe ansatz. The Bethe-ansatz equations are obtained from the periodic boundary conditions.


2019 ◽  
Author(s):  
Pier Paolo Poier ◽  
Louis Lagardere ◽  
Jean-Philip Piquemal ◽  
Frank Jensen

<div> <div> <div> <p>We extend the framework for polarizable force fields to include the case where the electrostatic multipoles are not determined by a variational minimization of the electrostatic energy. Such models formally require that the polarization response is calculated for all possible geometrical perturbations in order to obtain the energy gradient required for performing molecular dynamics simulations. </p><div> <div> <div> <p>By making use of a Lagrange formalism, however, this computational demanding task can be re- placed by solving a single equation similar to that for determining the electrostatic variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p><div><div><div> </div> </div> </div> <p> </p><div> <div> <div> <p>variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p> </div> </div> </div> </div> </div> </div> </div> </div> </div>


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document