scholarly journals Fragmentation of two repelling Lund strings

2020 ◽  
Vol 8 (5) ◽  
Author(s):  
Cody B Duncan ◽  
Peter Skands

Motivated by recent discoveries of flow-like effects in pp collisions, and noting that multiple string systems can form and hadronize simultaneously in such collisions, we develop a simple model for the repulsive interaction between two Lund strings with a positive (colour-oriented) overlap in rapidity. The model is formulated in momentum space and is based on a postulate of a constant net transverse momentum being acquired per unit of overlap along a common rapidity direction. To conserve energy, the strings shrink in the longitudinal direction, essentially converting a portion of the string invariant mass m^2m2 into p_\perp^2p⊥2 for constant m_\perp^2 = m^2 + p_\perp^2m⊥2=m2+p⊥2 for each string. The reduction in string invariant mass implies a reduced overall multiplicity of produced hadrons; the increase in p_\perp^2p⊥2 is local and only affects hadrons in the overlapping region. Starting from the simplest case of two symmetric and parallel strings with massless endpoints, we generalize to progressively more complicated configurations. We present an implementation of this model in the Pythia event generator and use it to illustrate the effects on hadron p_\perpp⊥ distributions and dihadron azimuthal correlations, contrasting it with the current version of the “shoving” model implemented in the same generator.

Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Nikolaos Antoniou ◽  
Nikos Davis ◽  
Fotis Diakonos

AbstractWe performed an intermittency analysis of the proton density fluctuations in transverse momentum space for the collisions Si+A (A=Al,Si,P) and C+A (A=C,N) at maximum SPS energy $\sqrt {s_{NN} } $ ≈ 17 GeV). In our analysis we used exclusively proton tracks in the midrapidity region (|y CM| ≤ 0.75). For the Si+A system we find signature of power-law distributed density fluctuations quantified by the intermittency index ϕ 2 which approaches in size the predictions of critical QCD [Phys. Rev. Lett. 97, 032002 (2006)]. This result supports further the recent findings of power-law fluctuations in the density of (π +, π −) pairs with invariant mass close to their production threshold for the Si+Si at the same energy, reported in [Phys. Rev. C 81, 064907 (2010)].


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Alexander Lind ◽  
Andrea Banfi

AbstractWe present H1jet, a fast code that computes the total cross section and differential distribution in the transverse momentum of a colour singlet. In its current version, the program implements only leading-order $$2\rightarrow 1$$ 2 → 1 and $$2\rightarrow 2$$ 2 → 2 processes, but could be extended to higher orders. We discuss the processes implemented in H1jet, give detailed instructions on how to implement new processes, and perform comparisons to existing codes. This tool, mainly designed for theorists, can be fruitfully used to assess deviations of selected new physics models from the Standard Model behaviour, as well as to quickly obtain distributions of relevance for Standard Model phenomenology.


2010 ◽  
Vol 25 (36) ◽  
pp. 3047-3059 ◽  
Author(s):  
SHIGERU ODAKA

We show that the transverse momentum (pT) spectrum of Z boson production measured at Fermilab Tevatron can be well reproduced by leading-order event generators if Z + 1 jet processes are included with a proper solution for the double-count problem and if the parton shower (PS) branch kinematics are defined appropriately. The choice of the PS evolution variable does not definitely determine the low-pT behavior. Our new event generator employing the limited leading-log (LLL) subtraction and a built-in leading-log PS reproduces the spectrum very well, not only in large pT regions but also at low pT down to pT = 0.


2017 ◽  
Vol 26 (04) ◽  
pp. 1750021 ◽  
Author(s):  
Y. Ali ◽  
N. Ullah Jan ◽  
U. Tabassam ◽  
M. Suleymanov ◽  
A. S. Bhatti

Transverse momentum distributions of primary charged particles have been studied using simulated data from the HIJING 1.0 event generator in the minimum bias p–Pb collisions at [Formula: see text] = 0.9, 1.8, 2.76 and 5.02[Formula: see text], in the two forward pseudorapidity ([Formula: see text]) regions: [Formula: see text] and [Formula: see text] and in the transverse momentum range of [Formula: see text]. The simulated data in the pseudorapidity region of [Formula: see text] at 5.02[Formula: see text] depicts some differences in the region of [Formula: see text] [Formula: see text] 2[Formula: see text] when compared with CMS data. Model shows systematically higher values than the experimental measurements pointing out absorption effect for the experimental data. It is also observed that with increasing rapidity interval from [Formula: see text] to [Formula: see text] observed differences for the behavior of the transverse momentum distributions are shifted to high transverse momentum region. The nuclear modification factor as a function of transverse momentum is constructed using the HIJING 1.0 code. With incident energy, the values of nuclear modification factor increase, for 0.9 and 1.8 [Formula: see text], the distributions seem to increase, but for 2.76 and 5.02 [Formula: see text], the distributions look flat. Numerically, the value of nuclear modification factor increases with the increase in the number of jets. This result shows that for the considered more forward pseudorapidiry area, the influence of the incident energy dominates and this is the reason that main results in the areas are connected with the leading particles.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
...  

AbstractThe measurement of the azimuthal-correlation function of prompt D mesons with charged particles in pp collisions at $$\sqrt{s} =5.02\ \hbox {TeV}$$ s = 5.02 TeV and p–Pb collisions at $$\sqrt{s_{\mathrm{NN}}} = 5.02\ \hbox {TeV}$$ s NN = 5.02 TeV with the ALICE detector at the LHC is reported. The $$\mathrm{D}^{0}$$ D 0 , $$\mathrm{D}^{+} $$ D + , and $$\mathrm{D}^{*+} $$ D ∗ + mesons, together with their charge conjugates, were reconstructed at midrapidity in the transverse momentum interval $$3< p_\mathrm{T} < 24\ \hbox {GeV}/c$$ 3 < p T < 24 GeV / c and correlated with charged particles having $$p_\mathrm{T} > 0.3\ \hbox {GeV}/c$$ p T > 0.3 GeV / c and pseudorapidity $$|\eta | < 0.8$$ | η | < 0.8 . The properties of the correlation peaks appearing in the near- and away-side regions (for $$\Delta \varphi \approx 0$$ Δ φ ≈ 0 and $$\Delta \varphi \approx \pi $$ Δ φ ≈ π , respectively) were extracted via a fit to the azimuthal correlation functions. The shape of the correlation functions and the near- and away-side peak features are found to be consistent in pp and p–Pb collisions, showing no modifications due to nuclear effects within uncertainties. The results are compared with predictions from Monte Carlo simulations performed with the PYTHIA, POWHEG+PYTHIA, HERWIG, and EPOS 3 event generators.


Sign in / Sign up

Export Citation Format

Share Document