scholarly journals Exponentially long lifetime of universal quasi-steady states in topological Floquet pumps

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Gulden ◽  
Erez Berg ◽  
Mark Spencer Rudner ◽  
Netanel Lindner

We investigate a mechanism to transiently stabilize topological phenomena in long-lived quasi-steady states of isolated quantum many-body systems driven at low frequencies. We obtain an analytical bound for the lifetime of the quasi-steady states which is exponentially large in the inverse driving frequency. Within this lifetime, the quasi-steady state is characterized by maximum entropy subject to the constraint of fixed number of particles in the system's Floquet-Bloch bands. In such a state, all the non-universal properties of these bands are washed out, hence only the topological properties persist.

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 149-167 ◽  
Author(s):  
Andrea Prunotto ◽  
Wanda Maria Alberico ◽  
Piotr Czerski

Abstract The rooted maps theory, a branch of the theory of homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the genus of a Feynman diagram, which totally differs from the usual one, is given.


2005 ◽  
Vol 613 (3-4) ◽  
pp. 221-225 ◽  
Author(s):  
Stjepan Meljanac ◽  
Andjelo Samsarov

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
A. Grekov ◽  
A. Zotov

Abstract The infinite number of particles limit in the dual to elliptic Ruijsenaars model (coordinate trigonometric degeneration of quantum double elliptic model) is proposed using the Nazarov-Sklyanin approach. For this purpose we describe double-elliptization of the Cherednik construction. Namely, we derive explicit expression in terms of the Cherednik operators, which reduces to the generating function of Dell commuting Hamiltonians on the space of symmetric functions. Although the double elliptic Cherednik operators do not commute, they can be used for construction of the N → ∞ limit.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Kazuki Yamamoto ◽  
Yuto Ashida ◽  
Norio Kawakami

2008 ◽  
Vol 17 (supp01) ◽  
pp. 304-317
Author(s):  
Y. M. ZHAO

In this paper we review regularities of low-lying states for many-body systems, in particular, atomic nuclei, under random interactions. We shall discuss the famous problem of spin zero ground state dominance, positive parity dominance, collective motion, odd-even staggering, average energies, etc., in the presence of random interactions.


2021 ◽  
Vol 126 (11) ◽  
Author(s):  
Benjamin Geiger ◽  
Juan Diego Urbina ◽  
Klaus Richter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document