scholarly journals Indirect searches for dark matter bound state formation and level transitions

2020 ◽  
Vol 9 (5) ◽  
Author(s):  
Iason Baldes ◽  
Francesca Calore ◽  
Kalliopi Petraki ◽  
Vincent Poireau ◽  
Nicholas L. Rodd

Indirect searches for dark matter (DM) have conventionally been applied to the products of DM annihilation or decay. If DM couples to light force carriers, however, it can be captured into bound states via dissipation of energy that may yield detectable signals. We extend the indirect searches to DM bound state formation and transitions between bound levels, and constrain the emission of unstable dark photons. Our results significantly refine the predicted signal flux that could be observed in experiments. As a concrete example, we use Fermi-LAT dwarf spheroidal observations to obtain constraints in terms of the dark photon mass and energy which we use to search for the formation of stable or unstable bound states.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Pyungwon Ko ◽  
Toshinori Matsui ◽  
Yi-Lei Tang

Abstract If fermionic dark matter (DM) is stabilized by dark U(1) gauge symmetry that is spontaneously broken into its subgroup Z2, the particle contents of the model becomes very rich: DM and excited DM, both of them are Majorana fermions, as well as two dark force mediators, dark photon and dark Higgs boson are naturally present due to the underlying dark gauge symmetry. In this paper, we study the DM bound state formation processes within this scenario, assuming both dark photon and dark Higgs are light mediators and including the effects of excited DM. The Goldstone boson contributions to the potential matrix in the Schrödinger equations are found to be important. The emissions of a longitudinal vector boson (or somehow equivalently a Goldstone boson) during the DM bound state formations are crucial to induce a significant reannihilation process, reducing the dark matter relic abundance. Most of the stringent constraints for this kind of dark matter considered in the literature are simply evaded.


2020 ◽  
Vol 124 (16) ◽  
Author(s):  
Tobias Binder ◽  
Kyohei Mukaida ◽  
Kalliopi Petraki

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yuichiro Nakai ◽  
Ryo Namba ◽  
Ziwei Wang

Abstract We discuss the possibility of producing a light dark photon dark matter through a coupling between the dark photon field and the inflaton. The dark photon with a large wavelength is efficiently produced due to the inflaton motion during inflation and becomes non-relativistic before the time of matter-radiation equality. We compute the amount of production analytically. The correct relic abundance is realized with a dark photon mass extending down to 10−21 eV.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Ruben Oncala ◽  
Kalliopi Petraki

Abstract The Higgs doublet can mediate a long-range interaction between multi-TeV particles coupled to the Weak interactions of the Standard Model, while its emission can lead to very rapid bound-state formation processes and bound-to-bound transitions. Using the rates calculated in a companion paper, here we compute the thermal decoupling of multi-TeV WIMP dark matter coupled to the Higgs, and show that the formation of metastable dark matter bound states via Higgs-doublet emission and their decay decrease the relic density very significantly. This in turn implies that WIMP dark matter may be much heavier than previously anticipated, or conversely that for a given mass, the dark matter couplings to the Higgs may be much lower than previously predicted, thereby altering the dark matter phenomenology. While we focus on a minimal singlet-doublet model in the coannihilation regime, our calculations can be extended to larger multiplets where the effects under consideration are expected to be even more significant.


2014 ◽  
Vol 2014 (12) ◽  
pp. 033-033 ◽  
Author(s):  
Benedict von Harling ◽  
Kalliopi Petraki

Author(s):  
J. A. Sauls

Many of the properties of superconductors related to quantum coherence are revealed when the superconducting state is forced to vary in space in response to an external magnetic field, a proximity contact, an interface to a ferromagnet or to impurities embedded in the superconductor. Among the earliest examples is Andreev reflection of an electron into a retro-reflected hole at a normal-superconducting interface. In regions of strong inhomogeneity, multiple Andreev reflection leads to the formation of sub-gap states, Andreev bound states , with excitation energies below the superconducting gap. These states play a central role in our understanding of inhomogeneous superconductors. The discoveries of unconventional superconductivity in many classes of materials, advances in fabrication of superconducting/ferromagnetic hybrids and nanostructures for confining superfluid 3 He, combined with theoretical developments in topological quantum matter have dramatically expanded the significance of branch conversion scattering and Andreev bound state formation. This collection of articles highlights developments in inhomogeneous superconductivity, unconventional superconductivity and topological phases of superfluid 3 He, in which Andreev scattering and bound states underpin much of the physics of these systems. This article provides an introduction to the basic physics of Andreev scattering, bound-state formation and their signatures. The goal is both an introduction for interested readers who are not already experts in the field, and to highlight examples in which branch conversion scattering and Andreev bound states provide unique signatures in the transport properties of superconductors. This article is part of the theme issue ‘Andreev bound states’.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Tobias Binder ◽  
Burkhard Blobel ◽  
Julia Harz ◽  
Kyohei Mukaida

Abstract The formation of meta-stable dark matter bound states in coannihilating scenarios could efficiently occur through the scattering with a variety of Standard Model bath particles, where light bosons during the electroweak cross over or even massless photons and gluons are exchanged in the t-channel. The amplitudes for those higher-order processes, however, are divergent in the collinear direction of the in- and out-going bath particles if the mediator is massless. To address the issue of collinear divergences, we derive the bound-state formation collision term in the framework of non-equilibrium quantum field theory. The main result is an expression for a more general cross section, which allows to compute higher-order bound-state formation processes inside the primordial plasma background in a comprehensive manner. Based on this result, we show that next-to-leading order contributions, including the bath-particle scattering, are i) collinear finite and ii) generically dominate over the on-shell emission for temperatures larger than the absolute value of the binding energy. Based on a simplified model, we demonstrate that the impact of these new effects on the thermal relic abundance is significant enough to make it worthwhile to study more realistic coannihilation scenarios.


Sign in / Sign up

Export Citation Format

Share Document