scholarly journals Pion electronic decay and lepton universality

Author(s):  
Dinko Pocanic

In common with a number of simple processes involving elementary particles, charged pion decays are profoundly shaped by applicable Standard Model (SM) symmetries and properties. Given the highly precise SM theoretical description, pion decays are used as selective probes of SM parameters, and of possible SM extensions. The PEN experiment at PSI is studying the \pi^+ \to e^+\nu_e(\gamma)π+→e+νe(γ), or \pi_{e2(\gamma)}πe2(γ) decay. The primary goal is to reach the relative precision of 5 \times 10^{-4}5×10−4 in R_{e/\mu}^\piRe/μπ, the branching ratio for \pi_{e2(\gamma)}πe2(γ) decay. We review the PEN research program, its present status, and prospects.

2006 ◽  
Vol 21 (27) ◽  
pp. 5652-5659 ◽  
Author(s):  
ANTONIO PICH

Precise measurements of the τ lepton properties provide stringent tests of the Standard Model structure and accurate determinations of its parameters. We overview the present status of a few selected topics: lepton universality, QCD tests and the determination of αs, msand |Vus| from hadronic τ decays, and lepton flavor violation phenomena.


2004 ◽  
Vol 19 (35) ◽  
pp. 2595-2610 ◽  
Author(s):  
MARTIN L. PERL ◽  
ERIC R. LEE ◽  
DINESH LOOMBA

Since the initial measurements of the electron charge a century ago, experimenters have faced the persistent question as to whether elementary particles exist that have charges that are fractional multiples of the electron charge. In the standard model of particle physics the quarks are such particles, but it is assumed that quarks cannot be individually isolated, the quarks always being confined inside hadrons. This paper is a brief review of the present status of searches for isolatable fractional charge particles such as a lepton-like particle with fractional charge or an unconfined quark. There have been a very large number of searches but there is no confirmed evidence for existence of isolatable fractional charge particles. It may be that they do not exist, but it is also possible that they are very massive or that their production mechanisms are very small so that they have been missed by existing searches. Therefore the aim of this review is to urge (a) the invention of ways to substantially increase the range of known search methods and (b) to urge the invention of new search methods for isolatable fractional charge particles.


2007 ◽  
Vol 22 (10) ◽  
pp. 1781-1795 ◽  
Author(s):  
TOBIAS HURTH

We report the recent progress in Standard Model calculations of b→s transitions. We discuss the first NNLL prediction of the [Formula: see text] branching ratio, including important additional subtleties due to nonperturbative corrections and logarithmically-enhanced cut effects, and also the recent results on the inclusive mode [Formula: see text]. Moreover, new results on the corresponding exclusive modes are reviewed. Finally, we comment on the present status of the so-called B→Kπ puzzle in hadronic b→s transitions.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
E. Cortina Gil ◽  
◽  
A. Kleimenova ◽  
E. Minucci ◽  
S. Padolski ◽  
...  

Abstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


2019 ◽  
Vol 218 ◽  
pp. 02012
Author(s):  
Graziano Venanzoni

I will report on the recent measurement of the fine structure constant below 1 GeV with the KLOE detector. It represents the first measurement of the running of α(s) in this energy region. Our results show a more than 5σ significance of the hadronic contribution to the running of α(s), which is the strongest direct evidence both in time-and space-like regions achieved in a single measurement. From a fit of the real part of Δα(s) and assuming the lepton universality the branching ratio BR(ω → µ+µ−) = (6.6 ± 1.4stat ± 1.7syst) · 10−5 has been determined


2018 ◽  
Vol 33 (32) ◽  
pp. 1850194
Author(s):  
Aritra Biswas ◽  
Sanjoy Mandal ◽  
Nita Sinha

We show that for a heavy vector-like quark model with a down type isosinglet, branching ratio for [Formula: see text] decay is enhanced by more than [Formula: see text] as compared to that in the Standard model when QCD corrections to next-to-leading order are incorporated. In a left–right symmetric model (LRSM) along with a heavy vector-like fermion, enhancement of this order can be achieved at the bare (QCD uncorrected) level itself. We propose that a measurement of the photon polarization could be used to signal the presence of such new physics in spite of the large long distance effects. We find that there is a large region within the allowed parameter space of the model with a vector-like quark and an additional left–right symmetry, where, the photon polarization can be dominantly right-handed.


Sign in / Sign up

Export Citation Format

Share Document