relative precision
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Sunyoung Park ◽  
John T. Serences

Top-down spatial attention enhances cortical representations of behaviorally relevant visual information and increases the precision of perceptual reports. However, little is known about the relative precision of top-down attentional modulations in different visual areas, especially compared to the highly precise stimulus-driven responses that are observed in early visual cortex. For example, the precision of attentional modulations in early visual areas may be limited by the relatively coarse spatial selectivity and the anatomical connectivity of the areas in prefrontal cortex that generate and relay the top-down signals. Here, we used fMRI and human participants to assess the precision of bottom-up spatial representations evoked by high contrast stimuli across the visual hierarchy. Then, we examined the relative precision of top-down attentional modulations in the absence of spatially-specific bottom-up drive. While V1 showed the largest relative difference between the precision of top-down attentional modulations and the precision of bottom-up modulations, mid-level areas such as V4 showed relatively smaller differences between the precision of top-down and bottom-up modulations. Overall, this interaction between visual areas (e.g. V1 vs V4) and the relative precision of top-down and bottom-up modulations suggests that the precision of top-down attentional modulations is limited by the representational fidelity of areas that generate and relay top-down feedback signals.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Leonard Nitzsche ◽  
Jens Goldschmidt ◽  
Armin Lambrecht ◽  
Jürgen Wöllenstein

Abstract A dual comb spectrometer is used as gas sensor for the parallel detection of nitrous oxide (N2O) and carbon monoxide (CO). These gases have overlapping absorption features in the mid-infrared (MIR) at a wavelength of 4.6 µm. With a spectra acquisition rate of 10 Hz, concentrations of 50 ppm N2O and 30 ppm CO are monitored with a relative precision of 6 × 10 − 3 6\times {10^{-3}} and 3 × 10 − 3 3\times {10^{-3}} respectively. The limit of detections are 91 ppb for N2O and 50 ppb for CO for an integration time of 25 s. The system exhibits a linear sensitivity from 2 ppm to 100 ppm with coefficients of determination of 0.99998 for N2O and 0.99996 for CO.


2021 ◽  
Vol 929 (1) ◽  
pp. 012014
Author(s):  
D V Kenigsberg ◽  
Yu M Salamatina ◽  
O A Prokhorov ◽  
S I Kuzikov

Abstract As part of the research of modern movements of the Earth’s crust, an analysis of 7 high-precision methods for calculating GNSS positions was carried out for the convergence of their daily mean coordinates. Based on Euclidean distances, regular and maximal discrepancies between coordinates of different methods are given. According to the coordinates in the ITRF, 5 methods are stood out with regular coordinate discrepancies <1 mm, and individual maximum discrepancies up to 30 mm. The other two methods have regular discrepancies in coordinates up to 2 cm, and the maximum differences reach 1 m. For a group of stations global coordinates transformation into a local reference frame leads to the effect of coordinate stabilization and increases their relative precision in the time series. As a result of such procedure, the level of maximum coordinate discrepancies between the methods decreased to 46%. Moreover, one of the methods of calculating coordinates has improved its convergence with the other methods by 80%. Based on the Euclidean distance method, the quality of the raw data for each station was evaluated. Thus, there is a group of 8 stations, for which the convergence of coordinates in different methods are approximately at the same level, and 2-3 times better than for the other 2 stations.


2021 ◽  
Vol 14 (10) ◽  
pp. 6675-6693
Author(s):  
Jonas Hamperl ◽  
Clément Capitaine ◽  
Jean-Baptiste Dherbecourt ◽  
Myriam Raybaut ◽  
Patrick Chazette ◽  
...  

Abstract. Laser active remote sensing of tropospheric water vapor is a promising technology to complement passive observational means in order to enhance our understanding of processes governing the global hydrological cycle. In such a context, we investigate the potential of monitoring both water vapor H216O and its isotopologue HD16O using a differential absorption lidar (DIAL) allowing for ground-based remote measurements at high spatio-temporal resolution (150 m and 10 min) in the lower troposphere. This paper presents a sensitivity analysis and an error budget for a DIAL system under development which will operate in the 2 µm spectral region. Using a performance simulator, the sensitivity of the DIAL-retrieved mixing ratios to instrument-specific and environmental parameters is investigated. This numerical study uses different atmospheric conditions ranging from tropical to polar latitudes with realistic aerosol loads. Our simulations show that the measurement of the main isotopologue H216O is possible over the first 1.5 km of atmosphere with a relative precision in the water vapor mixing ratio of <1 % in a mid-latitude or tropical environment. For the measurement of HD16O mixing ratios under the same conditions, relative precision is found to be slightly lower but still sufficient for the retrieval of range-resolved isotopic ratios with precisions in δD of a few per mil. We also show that expected precisions vary by an order of magnitude between tropical and polar conditions, the latter giving rise to poorer sensitivity due to low water vapor content and low aerosol load. Such values have been obtained for a commercial InGaAs PIN photodiode, as well as for temporal and line-of-sight resolutions of 10 min and 150 m, respectively. Additionally, using vertical isotopologue profiles derived from a previous field campaign, precision estimates for the HD16O isotopic abundance are provided for that specific case.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Ryuta Kiuchi ◽  
Yanxi Gu ◽  
Min Zhong ◽  
Lingteng Kong ◽  
Alex Schuy ◽  
...  

AbstractThe precision of the yield measurement of the Higgs boson decaying into a pair of Z bosons process at the Circular Electron Positron Collider is evaluated. Including the recoil Z boson associated with the Higgs production (Higgsstrahlung) a total of three Z bosons are involved for this channel, from which final states characterized by the presence of a pair of leptons, quarks, and neutrinos are chosen for the signal. Two analysis approaches are compared and the final statistical precision of $${\sigma }_{\mathrm {ZH}}{\cdot }$$ σ ZH · BR($$H \rightarrow ZZ^{*}$$ H → Z Z ∗ ) is estimated to be 6.9% using a multivariate analysis technique, based on boosted decision trees. The relative precision of the Higgs boson width, using this $$H \rightarrow ZZ^{*}$$ H → Z Z ∗ decay topology, is estimated by combining the obtained result with the precision of the inclusive ZH cross section measurement.


Author(s):  
Dinko Pocanic

In common with a number of simple processes involving elementary particles, charged pion decays are profoundly shaped by applicable Standard Model (SM) symmetries and properties. Given the highly precise SM theoretical description, pion decays are used as selective probes of SM parameters, and of possible SM extensions. The PEN experiment at PSI is studying the \pi^+ \to e^+\nu_e(\gamma)π+→e+νe(γ), or \pi_{e2(\gamma)}πe2(γ) decay. The primary goal is to reach the relative precision of 5 \times 10^{-4}5×10−4 in R_{e/\mu}^\piRe/μπ, the branching ratio for \pi_{e2(\gamma)}πe2(γ) decay. We review the PEN research program, its present status, and prospects.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
A. M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
J. W. Andrejkovic ◽  
T. Bergauer ◽  
...  

AbstractThe measurement of the luminosity recorded by the CMS detector installed at LHC interaction point 5, using proton–proton collisions at $$\sqrt{s}=13\,{\text {TeV}} $$ s = 13 TeV in 2015 and 2016, is reported. The absolute luminosity scale is measured for individual bunch crossings using beam-separation scans (the van der Meer method), with a relative precision of 1.3 and 1.0% in 2015 and 2016, respectively. The dominant sources of uncertainty are related to residual differences between the measured beam positions and the ones provided by the operational settings of the LHC magnets, the factorizability of the proton bunch spatial density functions in the coordinates transverse to the beam direction, and the modeling of the effect of electromagnetic interactions among protons in the colliding bunches. When applying the van der Meer calibration to the entire run periods, the integrated luminosities when CMS was fully operational are 2.27 and 36.3 $$\,\text {fb}^{-1}$$ fb - 1 in 2015 and 2016, with a relative precision of 1.6 and 1.2%, respectively. These are among the most precise luminosity measurements at bunched-beam hadron colliders.


2021 ◽  
Author(s):  
Robin S Waples

Computer simulations were used to compare relative precision of two widely-used single-sample methods for estimating effective population size (Ne)--the sibship method and the linkage-disequilibrium (LD) method. Emphasis is on performance when thousands of gene loci are used, which now can easily be achieved even for non-model species. Results show that unless Ne is very small, if at least 500-2000 diallelic loci are used, precision of the LD method is higher than the maximum possible precision for the sibship method, which occurs when all sibling relationships have been correctly identified. Results also show that when precision is high for both methods, their estimates of effective population size are high and positively correlated, which limits additional gains in precision that might be obtained by combining information from the two estimators


2021 ◽  
Author(s):  
Jonas Hamperl ◽  
Clément Capitaine ◽  
Jean-Baptiste Dherbecourt ◽  
Myriam Raybaut ◽  
Patrick Chazette ◽  
...  

Abstract. Laser active remote sensing of tropospheric water vapor is a promising technology to complement passive observational means in order to enhance our understanding of processes governing the global hydrological cycle. In such context, we investigate the potential of monitoring both water vapor H216O and its isotopologue HD16O using a differential absorption lidar (DIAL) allowing for ground-based remote measurements at high spatio-temporal resolution (150 m and 10 min) in the lower troposphere. This paper presents a sensitivity analysis and an error budget for a DIAL system under development which will operate in the two-micron spectral region. This numerical study uses different atmospheric conditions ranging from tropical to polar latitudes with realistic aerosol loads. Our simulations show that the measurement of the main isotopologue H216O is possible over the first 1.5 km of atmosphere with a relative precision in the water vapor mixing ratio of < 1 % in a mid-latitude or tropical environment. For the measurement of HD16O mixing ratios under the same conditions, relative precision is shown to be of similar order, thus allowing for the retrieval of range-resolved isotopic ratios. We also show that expected precisions vary by an order of magnitude between tropical and polar conditions, the latter giving rise to reduced precision due to low water vapor content and low aerosol load. Such values have been obtained for a commercial InGaAs PIN photodiode, as well as temporal and line-of-sight resolutions of 10 min and 150 m, respectively. Additionally, using vertical isotopologue profiles derived from a previous field campaign, precision estimates for the HD16O isotopic abundance are provided.


2021 ◽  
Vol 14 (2) ◽  
pp. 75
Author(s):  
Caifeng Lv ◽  
Xiujie Huang ◽  
Shancheng Zhao

In Multi-Level-Cell (MLC) NAND flash memory, cell-to-cell interference (CCI) and retention time have become the main noise that degrades the data storage reliability. To mitigate such noise, a relative precision loss (RPL) nonuniform reference voltage sensing strategy is proposed in this paper. First, based on the NAND flash channel model with CCI and retention noise, we simulate the data storage process of MLC NAND flash by Monte Carlo method, and find that the threshold-voltage of each disturbed storage state shows approximately to be Gaussian distributed. Then, by Gaussian approximation, the distribution of threshold voltage can be estimated easily in mathematics with a little loss. Second, we introduce a concept of log-likelihood ratio (LLR)-based RPL ratio to determine the dominating overlap regions, and then propose a new nonuniform reference voltage sensing strategy. This strategy does not only reduce the memory sensing precision (i.e., the number of reference voltages), but also maintains the reliability of the soft information of NAND flash memory channel output for soft decoding. Third, we implement extensive simulations to verify the performance of the new nonuniform sensing strategy. The BER performances of LDPC codes for different sensing strategies are provided to show that the proposed LLR-based RPL-nonuniform sensing strategy can make a good compromise between memory sensing latency and error-correction performance.


Sign in / Sign up

Export Citation Format

Share Document