scholarly journals Fracture Resistance of Upper Central Incisors with Different Endodontic Accesses Restored with Lithium Disilicate Partial Laminate Veneers

2021 ◽  
Vol Volume 13 ◽  
pp. 541-552
Author(s):  
Hamit Serdar Cotert ◽  
Ilgin Akcay ◽  
Irem Cotert ◽  
Ece Altinova Hepdurgun
F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1491 ◽  
Author(s):  
Bushra Mohammed ◽  
Jylan EL-Guindy

Background: Cerasmart hybrid material offers specific advantages such as less fragility and more flexibility than glass ceramics. This material also has the option of readily modifying or repairing the surface and favorable stress-absorbing characteristics. In our study, Cerasmart hybrid and lithium disilicate ceramic laminate veneers with two different preparation designs were compared with regards to their fracture resistance. Methods: A total of 52 of comparable human central maxillary incisors were used. Group A (n=26) was made up of Cerasmart hybrid ceramic laminate veneers were fabricated from Cerasmart blocks, while Group B (n=26) was made up of lithium disilicate ceramic laminate veneers were made of IPS e.max pressable ingots. Each group was subdivided in two equal subgroups according to preparation designs. Subgroup I comprised Featheredge preparation design and subgroup II: Wraparound preparation design. All samples were subjected to thermocycling between 5°C and 55°C in a water bath for a total of 1750 cycle with 10 seconds dwell time at each bath. The fracture load strength test was performed using a universal testing machine. Results: There was no statistically significant difference between all groups. E.max wraparound group recorded the highest fracture resistance mean value (422.1 N) followed by Cerasmart wraparound group (317.23 N), then e.max featheredge group (289.6 N), and finally Cerasmart featheredge group (259.3 N) had the lowest value as analyzed by one-way ANOVA. Conclusions: The Cerasmart hybrid material could be considered as a valid alternative to the widely used IPS e.max material. The fracture resistance of laminate veneers is not influenced by different type of preparation designs.


2018 ◽  
Vol 28 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Petrina Gerogianni ◽  
Wen Lien ◽  
Despoina Bompolaki ◽  
Ronald Verrett ◽  
Stephan Haney ◽  
...  

2018 ◽  
Vol 27 (7) ◽  
pp. 644-650 ◽  
Author(s):  
Evan E. Roberts ◽  
Clifton W. Bailey ◽  
Deborah L. Ashcraft-Olmscheid ◽  
Kraig S. Vandewalle

Author(s):  
Fariborz Vafaei ◽  
Alireza Izadi ◽  
Samaneh Abbasi ◽  
Maryam Farhadian ◽  
Zahra Bagheri

Objectives: This study aimed to compare the optical properties of Zolid FX, Katana UTML, and lithium disilicate laminate veneers. Materials and Methods: In this in-vitro experimental study, the maxillary left lateral incisor of a phantom received a laminate veneer preparation. An impression was made, and a die was fabricated using dental stone. The die was scanned using a computer-aided design/computer-aided manufacturing scanner. Ten dies were fabricated from each of the A1, A2, and A3 shades of composite resin. Laminate veneers were fabricated using A1 shade of Katana UTML, Zolid FX, and IPS e.max CAD ceramics (n=10) and placed on composite abutments using bleach and white colors of trial insertion paste (TIP). The optical properties were measured at the incisal, middle, and cervical thirds using a spectrophotometer. Data were analyzed using three-way analysis of variance and Tukey’s test. Results: The effect of laminate material on the L*, a*, and b* parameters was significant in all areas (P<0.001), except for the L* parameter in the middle and cervical thirds. All color parameters were affected by TIP color in all three regions in most samples (P<0.05). The effect of composite abutment shade was also significant in most cases (P<0.05). The effect of laminate material, abutment shade, and TIP color on the b* parameter was significant (P<0.001). The L* parameter was almost the same in the two zirconia and lithium disilicate ceramic groups. Conclusion: The composite abutment shade, TIP color, and laminate material should be carefully selected to achieve optimal aesthetics in laminate veneers.


Author(s):  
Erhan Tugcu ◽  
◽  
Erkut Kahramanoglu ◽  
Yilmaz Umut Aslan ◽  
Yasemin Ozkan ◽  
...  

2018 ◽  
Vol 28 (2) ◽  
pp. e524-e529 ◽  
Author(s):  
Hyung-In Yoon ◽  
Paul J. Sohn ◽  
Sharon Jin ◽  
Hawazin Elani ◽  
Sang J. Lee

2014 ◽  
Vol 30 (2) ◽  
pp. 122-130 ◽  
Author(s):  
M. Schmitter ◽  
M. Schweiger ◽  
D. Mueller ◽  
S. Rues

2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Amr El-Etreby ◽  
Mahmoud Metwally ◽  
Gihan EL-Nagar

Objective: The recycling of heat pressed lithium disilicate glass-ceramic leftover material has been reported to be done by dental laboratories. The effect of this procedure on the fracture resistance of single crowns is unknown, especially when it is functioning inside the oral cavity with subsequent exposure to temperature changes and cycles of mastication. Material and Methods: A total of 28 lithium disilicate glass-ceramic crowns (IPS emax Press) were constructed and randomly assigned into two groups (n = 14); Group (P): Included crowns fabricated from new e.max ingots. Group (R): Included crowns fabricated from repressed e.max buttons. Specimens of each group were divided into two equal subgroups (n = 7) according to whether the aging of specimens will be performed or not before fracture resistance testing. Subgroup (N), samples were subjected to fracture resistance without thermo-mechanical aging, while subgroup (A), samples were subjected to thermo-cycling and cyclic loading before being subjected to fracture strength testing. Different methods; SEM, XRD, EDAX were used to characterize the properties of lithium disilicate glass-ceramics before and after repressing. Results: The highest statistically significant fracture resistance value was recorded for the subgroup (RN) repressed/non-aged, followed by the subgroup repressed/aged (RA), while the lowest statistically significant mean value was recorded for the subgroup pressed/aged (PA). There was no significant difference between pressed/non-aged (PN) and repressed/aged (RA) subgroups. Conclusion: Repressing of leftover buttons may increase the fracture resistance of IPS emax Press crowns. Thermo-mechanical aging may negatively affect the fracture resistance of IPS emax Press crowns, yet Repressing may decrease this effect. Clinical implications: This is a novel approach that targets a point of research that has not been investigated before. It elaborates how repressing may decrease the effect of aging and increase the fracture resistance of lithium disilicate crowns. Thus, recycling of lithium disilicate glass ceramics might decrease its failure and prolong their serviceability.   Keywords Fracture resistance; Heat pressed; Lithium disilicate; Recycling; Repressing; Thermo-mechanical aging.


Sign in / Sign up

Export Citation Format

Share Document