mechanical aging
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 23)

H-INDEX

10
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4177
Author(s):  
Jun Hyun Lim ◽  
Jian Hou ◽  
Chang Hyun Lee

This study reports on an innovative press-loaded blister hybrid system equipped with gas-chromatography (PBS-GC) that is designed to evaluate the mechanical fatigue of two representative types of commercial Nafion membranes under relevant PEMFC operating conditions (e.g., simultaneously controlling temperature and humidity). The influences of various applied pressures (50 kPa, 100 kPa, etc.) and blistering gas types (hydrogen, oxygen, etc.) on the mechanical resistance loss are systematically investigated. The results evidently indicate that hydrogen gas is a more effective blistering gas for inducing dynamic mechanical losses of PEM. The changes in proton conductivity are also measured before and after hydrogen gas pressure-loaded blistering. After performing the mechanical aging test, a decrease in proton conductivity was confirmed, which was also interpreted using small angle X-ray scattering (SAXS) analysis. Finally, an accelerated dynamic mechanical aging test is performed using the homemade PBS-GC system, where the hydrogen permeability rate increases significantly when the membrane is pressure-loaded blistering for 10 min, suggesting notable mechanical fatigue of the PEM. In summary, this PBS-GC system developed in-house clearly demonstrates its capability of screening and characterizing various membrane candidates in a relatively short period of time (<1.5 h at 50 kPa versus 200 h).


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6346
Author(s):  
Haneen A. Sadeqi ◽  
Mirza Rustum Baig ◽  
Mohammad Al-Shammari

Fit accuracy and fracture strength of milled monolithic zirconia (Zi) and zirconia-reinforced lithium silicate (ZLS) crowns are important parameters determining the success of these restorations. This study aimed to evaluate and compare the marginal and internal fit of monolithic Zi and ZLS crowns, along with the fracture load, with and without mechanical aging. Thirty-two stone dies acquired from a customized master metal molar die were scanned, and ceramic crowns (16 Zi Ceramill Zolid HT+ and 16 ZLS Vita Suprinity) were designed and milled. Absolute marginal discrepancies (AMD), marginal gaps (MG), and internal gaps (IG) of the crowns, in relation to the master metal die, were evaluated using x-ray nanotomography (n = 16). Next, thirty-two metal dies were fabricated based on the master metal die, and crowns (16 Zi; 16 ZLS) cemented and divided into four groups of eight each; eight Zi with mechanical aging (MA), eight Zi without mechanical aging (WMA), eight ZLS (MA), and eight ZLS (WMA). Two groups of crowns (Zi-MA; ZLS-MA) were subjected to 500,000 mechanical cycles (200 ± 50 N, 10 Hz) followed by axial compressive strength testing of all crowns, until failure, and the values were recorded. Independent sample t tests (α = 0.05) revealed no significant differences between Zi and ZLS crowns (p > 0.05); for both internal and marginal gaps, however, there were significant differences in AMD (p < 0.005). Independent samples Mann–Whitney U and Kruskal–Wallis tests revealed significant differences between the two materials, Zi and ZLS, regardless of fatigue loading, and for the individual material groups based on aging (α = 0.05). Multiple comparisons using Bonferroni post-hoc analysis showed significant differences between Zi and ZLS material groups, with or without aging. Within the limitations of this study, the ZLS crown fit was found to be on par with Zi, except for the AMD parameter. As regards fracture resistance, both materials survived the normal range of masticatory forces, but the Zi crowns demonstrated greater resistance to fracture. The monolithic Zi and ZLS crowns seem suitable for clinical application, based on the fit and fracture strength values obtained.


2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Amr El-Etreby ◽  
Mahmoud Metwally ◽  
Gihan EL-Nagar

Objective: The recycling of heat pressed lithium disilicate glass-ceramic leftover material has been reported to be done by dental laboratories. The effect of this procedure on the fracture resistance of single crowns is unknown, especially when it is functioning inside the oral cavity with subsequent exposure to temperature changes and cycles of mastication. Material and Methods: A total of 28 lithium disilicate glass-ceramic crowns (IPS emax Press) were constructed and randomly assigned into two groups (n = 14); Group (P): Included crowns fabricated from new e.max ingots. Group (R): Included crowns fabricated from repressed e.max buttons. Specimens of each group were divided into two equal subgroups (n = 7) according to whether the aging of specimens will be performed or not before fracture resistance testing. Subgroup (N), samples were subjected to fracture resistance without thermo-mechanical aging, while subgroup (A), samples were subjected to thermo-cycling and cyclic loading before being subjected to fracture strength testing. Different methods; SEM, XRD, EDAX were used to characterize the properties of lithium disilicate glass-ceramics before and after repressing. Results: The highest statistically significant fracture resistance value was recorded for the subgroup (RN) repressed/non-aged, followed by the subgroup repressed/aged (RA), while the lowest statistically significant mean value was recorded for the subgroup pressed/aged (PA). There was no significant difference between pressed/non-aged (PN) and repressed/aged (RA) subgroups. Conclusion: Repressing of leftover buttons may increase the fracture resistance of IPS emax Press crowns. Thermo-mechanical aging may negatively affect the fracture resistance of IPS emax Press crowns, yet Repressing may decrease this effect. Clinical implications: This is a novel approach that targets a point of research that has not been investigated before. It elaborates how repressing may decrease the effect of aging and increase the fracture resistance of lithium disilicate crowns. Thus, recycling of lithium disilicate glass ceramics might decrease its failure and prolong their serviceability.   Keywords Fracture resistance; Heat pressed; Lithium disilicate; Recycling; Repressing; Thermo-mechanical aging.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3375
Author(s):  
Felix Burkhardt ◽  
João Pitta ◽  
Vincent Fehmer ◽  
Philippe Mojon ◽  
Irena Sailer

The aim of this study was to investigate the effects of saliva contamination and the cleaning of the bond surface of titanium base (ti-base) abutments on the bonding stability and retention force values. The bond surface of the ti-base abutments was treated with airborne-particle abrasion. After contamination, the ti-base abutments underwent different cleaning protocols: water spray (H2O); alcohol (ALC); suspension of zirconium particles (SZP); reapplied airborne-particle abrasion (APA); and a control condition without contamination and cleaning (CTR). All lithium disilicate crowns were bonded to the ti-base abutments using a primer and a self-curing composite. Bonded specimens underwent thermo-mechanical aging. Bond failure analysis and pull-off testing were performed. Bond failure occurred more frequently in groups H2O, ALC, SZP, and APA (p < 0.05). Significant differences in retention force values were only found between CTR and ALC (p < 0.05). Specimens which did not show bond failure after ageing had higher retention force values than the specimens that showed bond failure (p < 0.05). Saliva contamination with cleaning can degrade the bonding properties to titanium. For the retention force values, only the protocol with alcohol after contamination could not restore the values.


2021 ◽  
Author(s):  
Jia Ren ◽  
Kuiliang Gong ◽  
Gaiqing Zhao ◽  
Xinhu Wu ◽  
Xiaobo Wang

Abstract In this article, Lewis acid–base complex of lithium 12-hydroxystearate (LHS) with diboron compound is formed by the introduction of bis(pinacolato)diboron (B2Pin2) into lithium grease. The interaction between Lewis acid B2Pin2 and Lewis base RCO2− of LHS is characterized by various techniques. Moreover, the rheological and tribological behaviors of the base grease are evaluated at low and moderate temperature, and the results indicate that the addition of B2Pin2 noticeably enhanced the rheological, friction-reducing, and anti-wear (AW) properties of the base grease, which likely owing to the fact that the formation of Lewis acid–base complex is beneficial for improving the soap fiber structure strength, helping to prevent the mechanical degradation of the lithium grease during mechanical aging process.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Quang Nguyen Trong ◽  
Hung Dang Viet ◽  
Linh Nguyen Pham Duy ◽  
Chuong Bui ◽  
Duong Duc La

Selection of a suitable thermal aging process could render desirable mechanical properties of the rubbers or blended rubbers. In this work, the effect of the aging processes on the mechanical properties and activation energies of natural rubbers (NR) and NR/chloroprene rubbers (CR) blends with low CR contents (5–10%) was investigated. Three aging processes including heat aging (at 110°C for 22 hours), mechanical aging (under dynamic loading to 140% strain for 16000 cycles), and complex aging (heat and mechanical aging) were studied. The results revealed that the compatibility of CR in natural rubber matrix had a significant effect on the dynamic properties of the blended rubber and negligible effect on the static properties. The changes in activation energies of the blended rubber during aging processes were calculated using Arrhenius relation. The calculated changes (ΔUc, ΔUd, and ΔUT) in activation energies were consistent with the results of mechanical properties of the blended rubber. Interestingly, the change in activation energies using complex aging conditions (ΔUc) was mostly equal to the total changes in activation energies calculated separately from heat aging (ΔUT) and mechanical aging (ΔUd) conditions. This indicates that, in complex aging conditions, the heat and dynamic loading factors act independently on the properties of the blended rubber.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Brandon K Walther ◽  
Anahita Mojiri ◽  
Navaneeth Krishna Rajeeva Pandian ◽  
Jacques Ohayon ◽  
Huie Wang ◽  
...  

Hutchinson-Gilford Progeria Syndrome (HGPS) is a disease of accelerated aging causing death in the mid-teens from myocardial infarction or stroke. The disease is caused by a point mutation in the gene encoding lamin-A. The mutated scaffolding protein is aberrantly farnesylated inducing a constellation of defects included nuclear abnormalities, genomic damage, and rapid senescence. Therapy targeting the abnormal farnesylation provides a modest extension of life, thus new insights and therapeutic approaches are urgently needed for these children. Consistent with previous morphological observations and new studies implicating YAP/TAZ mechanobiology as an important mechanical pathway for endothelial cell (EC) health under shear stress, we hypothesized that HGPS ECs have an innate mechanical disturbance rendering them unable to respond to external, atheroprotective cues. We used a microfluidic vessel-on-a-chip with channel geometries and fluid flow to precisely model the hemodynamic stimuli present in vasculature as we have previously described. We cultured iPSC-derived HGPS ECs in this system to study mechanoresponse to shear stress and YAP/TAZ signaling. HGPS ECs manifest a rounded, flattened appearance characteristic of senescent ECs, are unable to align in response to flow, and have aberrant YAP/TAZ activity despite unidirectional laminar flow. To explore the physical underpinnings of such biochemical disturbances, we used atomic force microscopy (AFM) to precisely characterize the shape of individual HGPS cells, and their deformation to a controlled force applied by the AFM cantilever. Preliminary measurements confirmed that HGPS cells have a reduced profile and are compositely stiffer (nuclear modulus + cytoskeletal modulus) than cells derived from the unaffected parent of the child. These data provide evidence of altered biophysical properties of senescent cells which we term “mechanical aging,” which is associated with aberrant signaling in response to hemodynamic stimuli. Further characterization of mechanical aging may lead to new therapeutic approaches for HGPS and other age-related diseases.


Sign in / Sign up

Export Citation Format

Share Document