scholarly journals Median Nerve Affection in Hypertensive Patients with and without Diabetes High-Resolution Ultrasound Assessment

2022 ◽  
Vol Volume 15 ◽  
pp. 183-188
Author(s):  
Ahmed Esmat ◽  
Mahmoud I Elshamy ◽  
Doaa Mohamed Zakaria ◽  
Zakarya Shady ◽  
Eman Roshdy Mohamed ◽  
...  
2021 ◽  
Author(s):  
Suren Jengojan ◽  
Christoph Schellen ◽  
Gregor Dovjak ◽  
Robert Schmidhammer ◽  
Michael Weber ◽  
...  

2004 ◽  
Vol 18 (2) ◽  
pp. 80-87 ◽  
Author(s):  
Archie Heddings ◽  
Mehmet Bilgen ◽  
Randolph Nudo ◽  
Bruce Toby ◽  
Terence McIff ◽  
...  

Objectives. It is widely accepted that peripheral nerve repairs performed within 6 weeks of injury have much better outcomes than those performed at later dates. However, there is no diagnostic technique that can determine if a traumatic peripheral nerve injury requires surgical intervention in the early postinjury phase. The objective of this article was to determine whether novel, noninvasive magnetic resonance imaging techniques could demonstrate the microstructure of human peripheral nerves that is necessary for determining prognosis and determining if surgery is indicated following traumatic injury. Methods. Ex vivo magnetic resonance imaging protocols were developed on a 9.4-T research scanner using spin-echo proton density and gradient-echo imaging sequences and a specially designed, inductively coupled radio frequency coil. These imaging protocols were applied to in situ imaging of the human median nerve in 4 fresh-frozen cadaver arms. Results. Noninvasive high-resolution images of the human median nerve were obtained. Structures in the nerve that were observed included fascicles, interfascicular epineurium, perineurium, and intrafascicular septations. Conclusion. Application of these imaging techniques to clinical scanners could provide physicians with a tool that is capable of grading the severity of nerve injuries and providing indications for surgery in the early postinjury phase.


2014 ◽  
Vol 40 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Yuexiang Wang ◽  
Chunfeng Zhao ◽  
Sandra M. Passe ◽  
Anika Filius ◽  
Andrew R. Thoreson ◽  
...  

2020 ◽  
Vol 10 (02) ◽  
pp. 73-88
Author(s):  
Mohamed Farouk Agag ◽  
Moutaz M. Kamal Elsharkawy ◽  
Ahmed Khedewy Ahmed

Diabetology ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 226-231
Author(s):  
Carlos Antonio Guillen-Astete ◽  
Monica Luque-Alarcon ◽  
Nuria Garcia-Montes

Background: Carpal tunnel syndrome is the most prevalent peripheral nerve entrapment condition of the upper limb. Among metabolic risk factors, diabetes is considered the most relevant. Although wrist ultrasound assessment of the median nerve has demonstrated a good correlation with the gold standard for the diagnosis of this syndrome, neurophysiological study, its usefulness in patients with diabetes is questionable because the compressive phenomenon is not the predominant one. Method: We conducted a retrospective study to compare the clinical and median nerve ultrasound features of patients with carpal tunnel syndrome previously diagnosed or not diagnosed with diabetes. Additionally, a linear multivariate regression analysis was performed to determine to what extent the cross-sectional area of the median nerve was dependent on the condition of diabetes by fixing other variables such as sex, age, or time of evolution. Results: We included 303 records of patients (mean age 44.3 ± 11.7 years old, 57.89% female, mean of time of evolution 13.6 ± 8.3 months) from 2012 to 2020. The cross-sectional area of the median nerve was 10.46 ± 1.44 mm2 in non-diabetic patients and 8.92 ± 0.9 mm2 in diabetic patients (p < 0.001). Additionally, diabetic patients had a shorter time of evolution (7.91 ± 8.28 months vs. 14.36 ± 0.526 months, p < 0.001). In the multivariate analysis, the resultant model (fixed R-square = 0.659, p = 0.003) included a constant of the following four variables: the evolution time (Beta coeff. = 0.108, p < 0.001 95% CI 0.091 to 0.126, standardized coeff. = 0.611), the condition of diabetes (Beta coeff. = −0.623, p < 0.001 95% CI −0.907 to −0.339, standardized coeff. = −0.152), the severity (Beta coeff. = 0.359, p = 0.001 95% CI 0.147 to 0.571, standardized coeff. = 0.169), and the masculine sex (Beta coeff. = 0.309, p = 0.003, 95% CI 0.109 to 0.509, standardized coeff. = 0.103). Conclusions: Ultrasound assessment of the median nerve in patients with diabetes is not a useful tool to confirm whether carpal tunnel syndrome should be diagnosed or not diagnosed.


2013 ◽  
Vol 119 (4) ◽  
pp. 853-863 ◽  
Author(s):  
Stephan B. Sobottka ◽  
Tobias Meyer ◽  
Matthias Kirsch ◽  
Edmund Koch ◽  
Ralf Steinmeier ◽  
...  

Object Intraoperative optical imaging (IOI) is an experimental technique used for visualizing functional brain areas after surgical exposure of the cerebral cortex. This technique identifies areas of local changes in blood volume and oxygenation caused by stimulation of specific brain functions. The authors describe a new IOI method, including innovative data analysis, that can facilitate intraoperative functional imaging on a routine basis. To evaluate the reliability and validity of this approach, they used the new IOI method to demonstrate visualization of the median nerve area of the somatosensory cortex. Methods In 41 patients with tumor lesions adjacent to the postcentral gyrus, lesions were surgically removed by using IOI during stimulation of the contralateral median nerve. Optical properties of the cortical tissue were measured with a sensitive camera system connected to a surgical microscope. Imaging was performed by using 9 cycles of alternating prolonged stimulation and rest periods of 30 seconds. Intraoperative optical imaging was based on blood volume changes detected by using a filter at an isosbestic wavelength (λ = 568 nm). A spectral analysis algorithm was used to improve computation of the activity maps. Movement artifacts were compensated for by an elastic registration algorithm. For validation, intraoperative conduction of the phase reversal over the central sulcus and postoperative evaluation of the craniotomy site were used. Results The new method and analysis enabled significant differentiation (p < 0.005) between functional and nonfunctional tissue. The identification and visualization of functionally intact somatosensory cortex was highly reliable; sensitivity was 94.4% and specificity was almost 100%. The surgeon was provided with a 2D high-resolution activity map within 12 minutes. No method-related side effects occurred in any of the 41 patients. Conclusions The authors' new approach makes IOI a contact-free and label-free optical technique that can be used safely in a routine clinical setup. Intraoperative optical imaging can be used as an alternative to other methods for the identification of sensory cortex areas and offers the added benefit of a high-resolution map of functional activity. It has great potential for visualizing and monitoring additional specific functional brain areas such as the visual, motor, and speech cortex. A prospective national multicenter clinical trial is currently being planned.


2013 ◽  
Vol 32 (12) ◽  
pp. 2091-2098 ◽  
Author(s):  
Christina Marciniak ◽  
Franklin Caldera ◽  
Leah Welty ◽  
Jean Lai ◽  
Paul Lento ◽  
...  
Keyword(s):  

2011 ◽  
Vol 3 (1) ◽  
pp. 78
Author(s):  
Adrian Gavrila ◽  
Cristian Searpe ◽  
Anca Rosu ◽  
Maria Ciobanu ◽  
Christina Pritulescu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document