scholarly journals Cyclic AMP-guanine exchange factor activation inhibits JNK-dependent lipopolysaccharide-induced apoptosis in rat hepatocytes

Author(s):  
Sawkat Anwer ◽  
Ponzetti ◽  
King ◽  
Gates ◽  
Sawkat Anwer ◽  
...  
2011 ◽  
Vol 301 (2) ◽  
pp. G385-G400 ◽  
Author(s):  
A. Johnston ◽  
K. Ponzetti ◽  
M. S. Anwer ◽  
C. R. L. Webster

Cholestatic liver disorders are accompanied by the hepatic accumulation of cytotoxic bile acids that induce cell death. Increases in cAMP protect hepatocytes from bile acid-induced apoptosis by a cAMP-guanine exchange factor (cAMP-GEF)/phosphoinositide-3-kinase (PI3K)/Akt pathway. The aim of these studies was to identify the downstream substrate in this pathway and to determine at what level in the apoptotic cascade cytoprotection occurs. Since inhibitory phosphorylation of glycogen synthase kinase-3 (GSK) occurs downstream of PI3K/Akt and this phosphorylation has been implicated in cell survival, we conducted studies to determine whether GSK was downstream in cAMP-GEF/PI3K/Akt-mediated cytoprotection. Our results show that treatment of hepatocytes with the cAMP-GEF-specific analog, 4-(4-chlorophenylthio)-2′- O-methyladenosine-3′,5′-cAMP, results in PI3K-dependent phosphorylation of GSK. Direct chemical inhibition of GSK in rat hepatocytes or human HUH7-NTCP cells with several structurally and functionally distinct inhibitors including bromoindirubin-3′-oxime (BIO), maleimides (SB216763, SB415286), thiadiazolidine derivatives, and LiCl attenuates apoptosis induced by glycochenodeoxycholate (GCDC). In addition, genetic silencing of the GSK β isoform with small interfering RNA attenuates GCDC apoptosis in HUH7-NTCP cells. Adenoviral inhibition of the Rap1 blocks both cAMP-GEF-mediated cytoprotection against GCDC-induced apoptosis and Akt/GSK3β phosphorylation. GCDC-induced phosphorylation of the proapoptotic kinase, c-Jun NH2-terminal kinase (JNK) is inhibited by GSK inhibition or cAMP-GEF activation. GCDC-induced apoptosis is accompanied by phosphorylation of the endoplasmic reticulum stress markers pIEF2α and IRE-1, and pretreatment with the cAMP-GEF analog or GSK inhibitors prevents this phosphorylation. Collectively, our results support the presence of a cAMP/cAMP-GEF/Rap1/PI3K/Akt/GSKβ survival pathway in hepatocytes that inhibits bile acid-induced JNK phosphorylation.


2006 ◽  
Vol 13 (12) ◽  
pp. 2023-2032 ◽  
Author(s):  
Y-C Chang ◽  
H-H Lee ◽  
Y-J Chen ◽  
G M Bokoch ◽  
Z-F Chang

Shock ◽  
2013 ◽  
Vol 39 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Baochun Zhang ◽  
Ikenna Nweze ◽  
Jaganathan Lakshmanan ◽  
Brian G. Harbrecht

2006 ◽  
Vol 20 (8) ◽  
pp. 1331-1342 ◽  
Author(s):  
T.N.D. Pham ◽  
M. Marion ◽  
F. Denizeau ◽  
C. Jumarie

1978 ◽  
Vol 170 (3) ◽  
pp. 615-625 ◽  
Author(s):  
S Foden ◽  
P J Randle

1. The total calcium concentration in rat hepatocytes was 7.9 microgram-atoms/g dry wt.; 77% of this was mitochondrial. Approx. 20% of cell calcium exchanged with 45Ca within 2 min. Thereafter incorporation proceeded at a low rate to reach 28% of total calcium after 60 min. Incorporation into mitochondria showed a similar time course and accounted for 20% of mitochondrial total calcium after 60 min. 2. The alpha-adrenergic agonists phenylephrine and adrenaline + propranolol stimulated incorporation of 45Ca into hepatocytes. Phenylephrine was shown to increase total calcium in hepatocytes. Phenylephrine inhibited efflux fo 45Ca from hepatocytes perifused with calcium-free medium. 3. Glucagon, dibutryl cyclic AMP and beta-adrenergic agonists adrenaline and 3-isobutyl-1-methyl-xanthine stimulated calcium efflux from hepatocytes perifused with calcium-free medium. The effect of glucagon was blocked by insulin. Insulin itself had no effect on calcium efflux and it did not affect the response to dibutyryl cyclic AMP. 4. Incorporation of 45Ca into mitochondria in hepatocytes was stimulated by phenylephrine and inhibited by glucagon and by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The effect of glucagon was blocked by insulin. 5. Ionophore A23187 stimulated hepatocyte uptake of 45Ca, uptake of 45Ca into mitochondria in hepatocytes and efflux of 45Ca into a calcium-free medium.


Sign in / Sign up

Export Citation Format

Share Document