scholarly journals Strategy for chemotherapeutic delivery using a nanosized porous metal-organic framework with a central composite design

2017 ◽  
Vol Volume 12 ◽  
pp. 1465-1474 ◽  
Author(s):  
Yingpeng Li ◽  
Xiuyan Li ◽  
Qingxia Guan ◽  
Chunjing Zhang ◽  
Ting Xu ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1887 ◽  
Author(s):  
Thuan Van Tran ◽  
Duyen Thi Cam Nguyen ◽  
Hanh T. N. Le ◽  
Long Giang Bach ◽  
Dai-Viet N. Vo ◽  
...  

In this study, a minimum-run resolution IV and central composite design have been developed to optimize tetracycline removal efficiency over mesoporous carbon derived from the metal-organic framework MIL-53 (Fe) as a self-sacrificial template. Firstly, minimum-run resolution IV, powered by the Design–Expert program, was used as an efficient and reliable screening study for investigating a set of seven factors, these were: tetracycline concentration (A: 5–15 mg/g), dose of mesoporous carbons (MPC) (B: 0.05–0.15 g/L), initial pH level (C: 2–10), contact time (D: 1–3 h), temperature (E: 20–40 °C), shaking speed (F: 150–250 rpm), and Na+ ionic strength (G: 10–90 mM) at both low (−1) and high (+1) levels, for investigation of the data ranges. The 20-trial model was analyzed and assessed by Analysis of Variance (ANOVA) data, and diagnostic plots (e.g., the Pareto chart, and half-normal and normal probability plots). Based on minimum-run resolution IV, three factors, including tetracycline concentration (A), dose of MPC (B), and initial pH (C), were selected to carry out the optimization study using a central composite design. The proposed quadratic model was found to be statistically significant at the 95% confidence level due to a low P-value (<0.05), high R2 (0.9078), and the AP ratio (11.4), along with an abundance of diagnostic plots (3D response surfaces, Cook’s distance, Box-Cox, DFFITS, Leverage versus run, residuals versus runs, and actual versus predicted). Under response surface methodology-optimized conditions (e.g., tetracycline concentration of 1.9 mg/g, MPC dose of 0.15 g/L, and pH level of 3.9), the highest tetracycline removal efficiency via confirmation tests reached up to 98.0%–99.7%. Also, kinetic intraparticle diffusion and isotherm models were systematically studied to interpret how tetracycline molecules were absorbed on an MPC structure. In particular, the adsorption mechanisms including “electrostatic attraction” and “π–π interaction” were proposed.


2021 ◽  
Vol 143 (3) ◽  
pp. 1365-1376
Author(s):  
Sérgio M. F. Vilela ◽  
Jorge A. R. Navarro ◽  
Paula Barbosa ◽  
Ricardo F. Mendes ◽  
Germán Pérez-Sánchez ◽  
...  

2014 ◽  
Vol 50 (14) ◽  
pp. 1678-1681 ◽  
Author(s):  
Jinjie Qian ◽  
Feilong Jiang ◽  
Linjie Zhang ◽  
Kongzhao Su ◽  
Jie Pan ◽  
...  

A highly porous metal–organic framework structurally consists of three topological kinds of 3-connected 1,3,5-benzenetricarboxylate ligands, Zn2(COO)4, Zn3O(COO)6 and Zn4O(COO)6 SBUs, featuring a new 3,3,3,4,4,6-c hexanodal topology.


2010 ◽  
Vol 49 (21) ◽  
pp. 9852-9862 ◽  
Author(s):  
Christophe Volkringer ◽  
Thierry Loiseau ◽  
Nathalie Guillou ◽  
Gérard Férey ◽  
Mohamed Haouas ◽  
...  

2021 ◽  
Vol 896 ◽  
pp. 13-20
Author(s):  
Xiao Yu Wen

As an important factor to measure environmental comfort, humidity control is very important. However, previous dehumidification methods have many defects, such as condensation and adsorbents, which often require a lot of energy. The growing requirements of an indoor environment can stem from the development of living levels and technology. Humidity, as an important factor to measure environmental comfort, affects living and production, and indoor humidity control is an indispensable part of modern architecture. However, there are many defects in the previous dehumidification methods, such as condensation dehumidification, which often requires a lot of energy. Traditional adsorbents (such as zeolite silica and activated alumina) have problems with fragile structures or high regeneration temperatures. In this paper, an indoor dehumidification device based on the porous metal-organic framework {MOF-801, Zr6O4(OH)4(Fumarate)6}, can realize the indoor dehumidification process only by using a small amount of solar energy (1 kilowatt per square meter). The device is expected to remove 0.2113 kg/h of moisture per square meter MOF-801, only needs a few additional energy inputs.


CrystEngComm ◽  
2014 ◽  
Vol 16 (1) ◽  
pp. 47-50 ◽  
Author(s):  
Yu-Hui Luo ◽  
Xiao-Yang Yu ◽  
Jia-Jun Yang ◽  
Hong Zhang

2011 ◽  
Vol 115 (42) ◽  
pp. 20460-20465 ◽  
Author(s):  
Svyatoslav P. Gabuda ◽  
Svetlana G. Kozlova ◽  
Denis G. Samsonenko ◽  
Danil N. Dybtsev ◽  
Vladimir P. Fedin

Sign in / Sign up

Export Citation Format

Share Document