scholarly journals Lentivirus-Mediated Overexpression or Silencing of Aquaporin 1 Affects the Proliferation, Migration and Invasion of TNF-α-Stimulated Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Wnt/β-Catenin Signaling Pathway

2021 ◽  
Vol Volume 14 ◽  
pp. 1945-1957
Author(s):  
Meng-yuan Zhou ◽  
Li Cai ◽  
Xiao-wen Feng ◽  
Yu-rong Mu ◽  
Bo Meng ◽  
...  
2020 ◽  
Author(s):  
Ha-Reum Lee ◽  
Su-Jin Yoo ◽  
Jinhyun Kim ◽  
In Seol Yoo ◽  
Chan Keol Park ◽  
...  

Abstract Background: Reactive oxygen species (ROS) regulate the migration and invasion of fibroblast-like synoviocytes (FLS), which are key effector cells in rheumatoid arthritis (RA) pathogenesis. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) induces ROS generation and consequently, enhances cell migration. Despite the important interrelationship between RA, FLS, and ROS, the effect of NOX4 on RA pathogenesis remains unclear. Methods: FLS isolated from RA (n=5) and osteoarthritis (OA, n=5) patients were stimulated with recombinant interleukin 17 (IL-17; 10 ng/ml) and tumor necrosis factor alpha (TNF-α; 10 ng/ml) for 1 h. Cell migration, invasion, adhesion molecule expression, vascular endothelial growth factor (VEGF) secretion, and ROS expression were examined. The mRNA and protein levels of NOX4 were analyzed by RT-qPCR and western blotting, respectively. The NOX4 inhibitor GLX351322 and NOX4 siRNA were used to inhibit NOX4 to probe the effect of NOX4 on these cellular processes. Results: Migration of RA FLS was increased 2.48-fold after stimulation with IL-17 and TNF-α, while no difference was observed for OA FLS. ROS expression increased in parallel with invasiveness of FLS following cytokine stimulation. When the expression of NOX was examined, NOX4 was significantly increased by 9.73-fold in RA FLS compared to unstimulated FLS. Following NOX4 inhibition, cytokine-induced vascular cell adhesion molecule 1 (VCAM1), VEGF, and migration and invasion capacity of RA FLS were markedly decreased to unstimulated levels. Conclusion: NOX4 is a key contributor to cytokine-enhanced migration and invasion via modulation of ROS, VCAM1, and VEGF in RA FLS.


2020 ◽  
Author(s):  
Ha-Reum Lee ◽  
Su-Jin Yoo ◽  
Jinhyun Kim ◽  
In Seol Yoo ◽  
Chan Keol Park ◽  
...  

Abstract Background: Reactive oxygen species (ROS) regulate the migration and invasion of fibroblast-like synoviocytes (FLS), which are key effector cells in rheumatoid arthritis (RA) pathogenesis. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) induces ROS generation and consequently, enhances cell migration. Despite the important interrelationship between RA, FLS, and ROS, the effect of NOX4 on RA pathogenesis remains unclear.Methods: FLS isolated from RA (n=5) and osteoarthritis (OA, n=5) patients were stimulated with recombinant interleukin 17 (IL-17; 10 ng/ml) and tumor necrosis factor alpha (TNF-α; 10 ng/ml) for 1 h. Cell migration, invasion, adhesion molecule expression, vascular endothelial growth factor (VEGF) secretion, and ROS expression were examined. The mRNA and protein levels of NOX4 were analyzed by RT-qPCR and western blotting, respectively. The NOX4 inhibitor GLX351322 and NOX4 siRNA were used to inhibit NOX4 to probe the effect of NOX4 on these cellular processes.Results: Migration of RA FLS was increased 2.48-fold after stimulation with IL-17 and TNF-α, while no difference was observed for OA FLS. ROS expression increased in parallel with invasiveness of FLS following cytokine stimulation. When the expression of NOX was examined, NOX4 was significantly increased by 9.73-fold in RA FLS compared to unstimulated FLS. Following NOX4 inhibition, cytokine-induced vascular cell adhesion molecule 1 (VCAM1), VEGF, and migration and invasion capacity of RA FLS were markedly decreased to unstimulated levels.Conclusion: NOX4 is a key contributor to cytokine-enhanced migration and invasion via modulation of ROS, VCAM1, and VEGF in RA FLS.


2020 ◽  
Author(s):  
Ha-Reum Lee ◽  
Su-Jin Yoo ◽  
Jinhyun Kim ◽  
In Seol Yoo ◽  
Chan Keol Park ◽  
...  

Abstract Background: Reactive oxygen species (ROS) regulate the migration and invasion of fibroblast-like synoviocytes (FLS), which are key effector cells in rheumatoid arthritis (RA) pathogenesis. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) induces ROS generation and consequently, enhances cell migration. Despite the important interrelationship between RA, FLS, and ROS, the effect of NOX4 on RA pathogenesis remains unclear. Methods: FLS isolated from RA (n=5) and osteoarthritis (OA, n=5) patients were stimulated with recombinant interleukin 17 (IL-17; 10 ng/ml) and tumor necrosis factor alpha (TNF-α; 10 ng/ml) for 1 h. Cell migration, invasion, adhesion molecule expression, vascular endothelial growth factor (VEGF) secretion, and ROS expression were examined. The mRNA and protein levels of NOX4 were analyzed by RT-qPCR and western blotting, respectively. The NOX4 inhibitor GLX351322 and NOX4 siRNA were used to inhibit NOX4 to probe the effect of NOX4 on these cellular processes. Results: Migration of RA FLS was increased 2.48-fold after stimulation with IL-17 and TNF-α, while no difference was observed for OA FLS. ROS expression increased in parallel with invasiveness of FLS following cytokine stimulation. When the expression of NOX was examined, NOX4 was significantly increased by 9.73-fold in RA FLS compared to unstimulated FLS. Following NOX4 inhibition, cytokine-induced vascular cell adhesion molecule 1 (VCAM1), VEGF, and migration and invasion capacity of RA FLS were markedly decreased to unstimulated levels. Conclusion: NOX4 is a key contributor to cytokine-enhanced migration and invasion via modulation of ROS, VCAM1, and VEGF in RA FLS.


Author(s):  
Jafar Karami ◽  
Elham Farhadi ◽  
Ali-Akbar Delbandi ◽  
Mehdi Shekarabi ◽  
Mohammad Naghi Tahmasebi ◽  
...  

Fibroblast-like synoviocytes (FLSs) produce lots of inflammatory molecules that trigger immune responses and intensification the inflammation and thereby play important roles in Rheumatoid Arthritis )RA( pathogenesis. Due to the important roles of toll-like receptor 4 (TLR4) in cytokine production and inflammation, we aimed to evaluate the effects of TAK-242 (Resatorvid) on interleukin (IL)1-β, IL-6, TNF-α, and TLR4 expression and two important proteins of nuclear factor-κB (NF-κB) signaling pathway (Ikβα and pIkβα) in RA and trauma FLSs. FLSs were isolated from synovial tissues of trauma (n=10) and RA (n=10) patients and cultured in Dulbecco's Modified Eagle Medium (DMEM). 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was performed to evaluate the cytotoxicity effects of TAK-242 on the RA FLSs. Real-time PCR was performed to measure the expression level of IL1-β, IL-6, TNF-α, and TLR4 genes in Lipopolysaccharide (LPS) and TAK-242 treated FLSs. Furthermore, the treated FLSs were evaluated for protein levels of Ikβα and pIkβα by western blot. The baseline expression of IL1-β, IL-6, TNF-α, and TLR4 showed no significant differences between healthy and RA FLSs. LPS stimulated FLSs significantly increased mRNA levels of IL-1β, IL-6, TNF-α, and TLR4 genes in both the healthy and RA FLSs compared with that of their control groups, and pretreatment with TAK-242 reversed the effect. Furthermore, LPS-stimulated FLSs significantly increased the level of pIkβα in both the healthy and RA FLSs compared with that of their control groups, and pretreatment with TAK-242 reversed the effect. We provide the data that TAK-242 through inhibiting the NF-κB signaling pathway may modulate TLR4-mediated inflammatory responses and could be considered as a potential therapeutic agent for RA patients.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Ha-Reum Lee ◽  
Su-Jin Yoo ◽  
Jinhyun Kim ◽  
In Seol Yoo ◽  
Chan Keol Park ◽  
...  

Abstract Background Reactive oxygen species (ROS) regulate the migration and invasion of fibroblast-like synoviocytes (FLS), which are key effector cells in rheumatoid arthritis (RA) pathogenesis. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) induces ROS generation and, consequently, enhances cell migration. Despite the important interrelationship between RA, FLS, and ROS, the effect of NOX4 on RA pathogenesis remains unclear. Methods FLS isolated from RA (n = 5) and osteoarthritis (OA, n = 5) patients were stimulated with recombinant interleukin 17 (IL-17; 10 ng/ml) and tumor necrosis factor alpha (TNF-α; 10 ng/ml) for 1 h. Cell migration, invasion, adhesion molecule expression, vascular endothelial growth factor (VEGF) secretion, and ROS expression were examined. The mRNA and protein levels of NOX4 were analyzed by RT-qPCR and western blotting, respectively. The NOX4 inhibitor GLX351322 and NOX4 siRNA were used to inhibit NOX4 to probe the effect of NOX4 on these cellular processes. Results Migration of RA FLS was increased 2.48-fold after stimulation with IL-17 and TNF-α, while no difference was observed for OA FLS. ROS expression increased in parallel with invasiveness of FLS following cytokine stimulation. When the expression of NOX was examined, NOX4 was significantly increased by 9.73-fold in RA FLS compared to unstimulated FLS. Following NOX4 inhibition, cytokine-induced vascular cell adhesion molecule 1 (VCAM1), VEGF, and migration and invasion capacity of RA FLS were markedly decreased to unstimulated levels. Conclusion NOX4 is a key contributor to cytokine-enhanced migration and invasion via modulation of ROS, VCAM1, and VEGF in RA FLS.


Sign in / Sign up

Export Citation Format

Share Document