scholarly journals The effect of nicotinamide adenine dinucleotide phosphate oxidase 4 on migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis

2020 ◽  
Author(s):  
Ha-Reum Lee ◽  
Su-Jin Yoo ◽  
Jinhyun Kim ◽  
In Seol Yoo ◽  
Chan Keol Park ◽  
...  

Abstract Background: Reactive oxygen species (ROS) regulate the migration and invasion of fibroblast-like synoviocytes (FLS), which are key effector cells in rheumatoid arthritis (RA) pathogenesis. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) induces ROS generation and consequently, enhances cell migration. Despite the important interrelationship between RA, FLS, and ROS, the effect of NOX4 on RA pathogenesis remains unclear. Methods: FLS isolated from RA (n=5) and osteoarthritis (OA, n=5) patients were stimulated with recombinant interleukin 17 (IL-17; 10 ng/ml) and tumor necrosis factor alpha (TNF-α; 10 ng/ml) for 1 h. Cell migration, invasion, adhesion molecule expression, vascular endothelial growth factor (VEGF) secretion, and ROS expression were examined. The mRNA and protein levels of NOX4 were analyzed by RT-qPCR and western blotting, respectively. The NOX4 inhibitor GLX351322 and NOX4 siRNA were used to inhibit NOX4 to probe the effect of NOX4 on these cellular processes. Results: Migration of RA FLS was increased 2.48-fold after stimulation with IL-17 and TNF-α, while no difference was observed for OA FLS. ROS expression increased in parallel with invasiveness of FLS following cytokine stimulation. When the expression of NOX was examined, NOX4 was significantly increased by 9.73-fold in RA FLS compared to unstimulated FLS. Following NOX4 inhibition, cytokine-induced vascular cell adhesion molecule 1 (VCAM1), VEGF, and migration and invasion capacity of RA FLS were markedly decreased to unstimulated levels. Conclusion: NOX4 is a key contributor to cytokine-enhanced migration and invasion via modulation of ROS, VCAM1, and VEGF in RA FLS.

2020 ◽  
Author(s):  
Ha-Reum Lee ◽  
Su-Jin Yoo ◽  
Jinhyun Kim ◽  
In Seol Yoo ◽  
Chan Keol Park ◽  
...  

Abstract Background: Reactive oxygen species (ROS) regulate the migration and invasion of fibroblast-like synoviocytes (FLS), which are key effector cells in rheumatoid arthritis (RA) pathogenesis. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) induces ROS generation and consequently, enhances cell migration. Despite the important interrelationship between RA, FLS, and ROS, the effect of NOX4 on RA pathogenesis remains unclear.Methods: FLS isolated from RA (n=5) and osteoarthritis (OA, n=5) patients were stimulated with recombinant interleukin 17 (IL-17; 10 ng/ml) and tumor necrosis factor alpha (TNF-α; 10 ng/ml) for 1 h. Cell migration, invasion, adhesion molecule expression, vascular endothelial growth factor (VEGF) secretion, and ROS expression were examined. The mRNA and protein levels of NOX4 were analyzed by RT-qPCR and western blotting, respectively. The NOX4 inhibitor GLX351322 and NOX4 siRNA were used to inhibit NOX4 to probe the effect of NOX4 on these cellular processes.Results: Migration of RA FLS was increased 2.48-fold after stimulation with IL-17 and TNF-α, while no difference was observed for OA FLS. ROS expression increased in parallel with invasiveness of FLS following cytokine stimulation. When the expression of NOX was examined, NOX4 was significantly increased by 9.73-fold in RA FLS compared to unstimulated FLS. Following NOX4 inhibition, cytokine-induced vascular cell adhesion molecule 1 (VCAM1), VEGF, and migration and invasion capacity of RA FLS were markedly decreased to unstimulated levels.Conclusion: NOX4 is a key contributor to cytokine-enhanced migration and invasion via modulation of ROS, VCAM1, and VEGF in RA FLS.


2020 ◽  
Author(s):  
Ha-Reum Lee ◽  
Su-Jin Yoo ◽  
Jinhyun Kim ◽  
In Seol Yoo ◽  
Chan Keol Park ◽  
...  

Abstract Background: Reactive oxygen species (ROS) regulate the migration and invasion of fibroblast-like synoviocytes (FLS), which are key effector cells in rheumatoid arthritis (RA) pathogenesis. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) induces ROS generation and consequently, enhances cell migration. Despite the important interrelationship between RA, FLS, and ROS, the effect of NOX4 on RA pathogenesis remains unclear. Methods: FLS isolated from RA (n=5) and osteoarthritis (OA, n=5) patients were stimulated with recombinant interleukin 17 (IL-17; 10 ng/ml) and tumor necrosis factor alpha (TNF-α; 10 ng/ml) for 1 h. Cell migration, invasion, adhesion molecule expression, vascular endothelial growth factor (VEGF) secretion, and ROS expression were examined. The mRNA and protein levels of NOX4 were analyzed by RT-qPCR and western blotting, respectively. The NOX4 inhibitor GLX351322 and NOX4 siRNA were used to inhibit NOX4 to probe the effect of NOX4 on these cellular processes. Results: Migration of RA FLS was increased 2.48-fold after stimulation with IL-17 and TNF-α, while no difference was observed for OA FLS. ROS expression increased in parallel with invasiveness of FLS following cytokine stimulation. When the expression of NOX was examined, NOX4 was significantly increased by 9.73-fold in RA FLS compared to unstimulated FLS. Following NOX4 inhibition, cytokine-induced vascular cell adhesion molecule 1 (VCAM1), VEGF, and migration and invasion capacity of RA FLS were markedly decreased to unstimulated levels. Conclusion: NOX4 is a key contributor to cytokine-enhanced migration and invasion via modulation of ROS, VCAM1, and VEGF in RA FLS.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Ha-Reum Lee ◽  
Su-Jin Yoo ◽  
Jinhyun Kim ◽  
In Seol Yoo ◽  
Chan Keol Park ◽  
...  

Abstract Background Reactive oxygen species (ROS) regulate the migration and invasion of fibroblast-like synoviocytes (FLS), which are key effector cells in rheumatoid arthritis (RA) pathogenesis. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) induces ROS generation and, consequently, enhances cell migration. Despite the important interrelationship between RA, FLS, and ROS, the effect of NOX4 on RA pathogenesis remains unclear. Methods FLS isolated from RA (n = 5) and osteoarthritis (OA, n = 5) patients were stimulated with recombinant interleukin 17 (IL-17; 10 ng/ml) and tumor necrosis factor alpha (TNF-α; 10 ng/ml) for 1 h. Cell migration, invasion, adhesion molecule expression, vascular endothelial growth factor (VEGF) secretion, and ROS expression were examined. The mRNA and protein levels of NOX4 were analyzed by RT-qPCR and western blotting, respectively. The NOX4 inhibitor GLX351322 and NOX4 siRNA were used to inhibit NOX4 to probe the effect of NOX4 on these cellular processes. Results Migration of RA FLS was increased 2.48-fold after stimulation with IL-17 and TNF-α, while no difference was observed for OA FLS. ROS expression increased in parallel with invasiveness of FLS following cytokine stimulation. When the expression of NOX was examined, NOX4 was significantly increased by 9.73-fold in RA FLS compared to unstimulated FLS. Following NOX4 inhibition, cytokine-induced vascular cell adhesion molecule 1 (VCAM1), VEGF, and migration and invasion capacity of RA FLS were markedly decreased to unstimulated levels. Conclusion NOX4 is a key contributor to cytokine-enhanced migration and invasion via modulation of ROS, VCAM1, and VEGF in RA FLS.


2020 ◽  
Author(s):  
Tae-Sik Nam ◽  
Dae-Ryoung Park ◽  
So-Young Rah ◽  
Tae-Gyu Woo ◽  
Hun Taeg Chung ◽  
...  

AbstractNicotinic acid adenine dinucleotide phosphate (NAADP) is an obligate driver of calcium signaling whose formation from other metabolites of nicotinamide adenine dinucleotide (NAD+) has remained elusive. In vitro, CD38-mediated NAADP synthesis requires an acidic pH and a nonphysiological concentration of nicotinic acid (NA). We discovered that the type II membrane form of CD38 catalyzes synthesis of NAADP by exchanging the nicotinamide moiety of nicotinamide adenine dinucleotide phosphate (NADP+) for the NA group of nicotinic acid adenine dinucleotide (NAAD) inside endolysosomes of interleukin 8 (IL8)-treated lymphokine-activated killer cells. Upon IL8 stimulation, cytosolic NADP+ is transported to acidified endolysosomes via connexin 43 via cAMP-EPAC-RAP1-PP2A signaling. Luminal CD38 then performs a base exchange reaction with the donor NA group deriving from NAAD, produced by newly described endolysosomal activities of NA phosphoribosyltransferase and NMN adenyltransferase 3. Thus, the membrane organization of endolysosomal CD38, a signal-mediated transport system for NADP+ and luminal NAD+ biosynthetic enzymes integrate signals from a chemokine and cAMP to specify the spatiotemporal mobilization of calcium to drive cell migration.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 204.3-204
Author(s):  
H. R. Lee ◽  
J. Kim ◽  
S. J. Yoo ◽  
J. A. Park ◽  
S. W. Kang

Background:Liver kinase B1 (LKB1) is known as a tumor suppressor gene and also inhibits reactive oxygen species (ROS) levels. Intracellular ROS are catalyzed by the enzyme complex nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). We previously reported that NOX4 induced the migration and invasion of fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA). Although LKB1 is expected to alleviate synovial inflammation through ROS regulation, the role of LKB1 in RA has not been examined.Objectives:To explore whether LKB1 affects RA inflammation, we transfected LKB1 siRNA and analyzed related gene expressions in RA FLS.Methods:Synovial tissues were obtained from RA patients who were undergoing synovectomy or joint replacement. The isolated cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum, 100 U/ml penicillin and 100 mg/ml streptomycin and maintained in a 5% CO2 incubator at 37 °C. FLS were used for experiments after four to six passages. Cells were transfected with lipofectamine transfection reagent and LKB1 siRNA duplex targeting constructs. After incubation for 24 h, downregulation of target expression was evaluated by real-time PCR and western blot analysis.Results:RA FLS was transfected with LKB1 siRNA and 90% of LKB1 mRNA expression was decreased. LKB1 knock-down also caused the decreased expression of mechanistic target of rapamycin (mTOR; 0.38 fold) and serine/threonine kinase (AKT) 2 (0.40 fold), which are downstream targets of LKB1. NOX4 was significantly increased (4.94 fold) by LKB1 inhibition. On the other side, the down regulated NOX4 induced significantly elevated LKB1 mRNA expression in RA FLS. When the expressions of proinflammatory cytokines were examined, IL-1β, IL-6, TNF-α were highly increased by LKB1 deficiency. FLS migration-related chemokines, IL-8 and MMP-3 were also enhanced compared to control.Conclusion:There was a negative correlation between NOX4 and LKB1 in RA FLS. As LKB1 deficiency induced the expression of proinflammatory cytokines and migration related chemokines, LKB1 could play a critical role in RA pathogenesis.References:[1]Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233–55.[2]Mateen S, Moin S, Khan AQ, Zafar A, Fatima N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS One. 2016;11(4):e0152925.Disclosure of Interests:None declared.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kuninobu Wakabayashi ◽  
Takeo Isozaki ◽  
Yumi Tsubokura ◽  
Sayaka Fukuse ◽  
Tsuyoshi Kasama

AbstractEotaxin-1 (CCL11) induces the migration of different leukocyte types by interacting with CCR3. In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) are pathogenic effectors and a major CCR3-expressing cell. The aim of this study was to investigate the expression and function of CCL11 in RA FLS. The expression of CCL11 and CCR3 was evaluated by ELISA, immunofluorescence and quantitative PCR analysis. The CCL11 levels in serum and synovial fluids (SFs) from RA patients were significantly higher than those in serum from healthy controls and SFs from osteoarthritis patients. CCL11 and CCR3 were expressed in the RA synovial tissue lining layers. The secretion of CCL11 in RA FLS-conditioned medium and the mRNA expression of CCL11 and CCR3 were induced by TNF-α. Furthermore, CCL11 induced the mRNA expression of CCL11 and CCR3. Application of a CCR3 antagonist reduced TNF-α-induced CCL11 secretion from RA FLS. CCL11 induced the migration of RA FLS and monocytes. RA FLS migration was decreased by treatment with CCL11 siRNA. The migration of monocytes to medium conditioned with CCL11 siRNA-transfected and TNF-α-stimulated RA FLS was reduced. These data indicate that the self-amplification of CCL11 via CCR3 may play an important role in cell migration in RA.


Author(s):  
M. Arif Hayat

Although it is recognized that niacin (pyridine-3-carboxylic acid), incorporated as the amide in nicotinamide adenine dinucleotide (NAD) or in nicotinamide adenine dinucleotide phosphate (NADP), is a cofactor in hydrogen transfer in numerous enzyme reactions in all organisms studied, virtually no information is available on the effect of this vitamin on a cell at the submicroscopic level. Since mitochondria act as sites for many hydrogen transfer processes, the possible response of mitochondria to niacin treatment is, therefore, of critical interest.Onion bulbs were placed on vials filled with double distilled water in the dark at 25°C. After two days the bulbs and newly developed root system were transferred to vials containing 0.1% niacin. Root tips were collected at ¼, ½, 1, 2, 4, and 8 hr. intervals after treatment. The tissues were fixed in glutaraldehyde-OsO4 as well as in 2% KMnO4 according to standard procedures. In both cases, the tissues were dehydrated in an acetone series and embedded in Reynolds' lead citrate for 3-10 minutes.


Sign in / Sign up

Export Citation Format

Share Document