scholarly journals Cerebrospinal Fluid Proteomics For Identification Of α2-Macroglobulin As A Potential Biomarker To Monitor Pharmacological Therapeutic Efficacy In Dopamine Dictated Disease States Of Parkinson’s Disease And Schizophrenia

2019 ◽  
Vol Volume 15 ◽  
pp. 2853-2867 ◽  
Author(s):  
Ashish Kumar Gupta ◽  
Ruchika Pokhriyal ◽  
Mohd Imran Khan ◽  
Domada Ratna Kumar ◽  
Rishab Gupta ◽  
...  
2018 ◽  
Vol 10 ◽  
pp. 117957351880358 ◽  
Author(s):  
Ashish Kumar Gupta ◽  
Komal Rani ◽  
Surabhi Swarnkar ◽  
Gaurav Khunger Kumar ◽  
Mohd Imran Khan ◽  
...  

Aim of the Study: Parkinson’s disease and schizophrenia are disease end points of dopaminergic deficit and hyperactivity, respectively, in the mid brain. Accordingly, current medications aim to restore normal dopamine levels, overshooting of which results in adverse effects of psychosis and extra-pyramidal symptoms, respectively. There are currently no available laboratory tests to guide treatment decisions or help predict adverse side effects of the drugs. The aim was to therefore explore the possibility of using apolipoprotein E as a biomarker to monitor pharmacological intervention in dopamine dictated states of Parkinson’s disease and schizophrenia for optimum therapy. Methods: Naïve and treated, Parkinson’s disease and schizophrenic patients were recruited from neurology and psychiatry clinics. Serum of healthy volunteers was collected as controls. Serum concentrations of apolipoprotein E was estimated by enzyme-linked immunosorbent assay (ELISA). Pathway analysis was carried out to delineate the interactions of apolipoprotein E in Parkinson’s disease and schizophrenia. Results: Apolipoprotein E levels are higher in Parkinson’s disease patients as compared with schizophrenic samples ( P < .05). Also, post-treatment apolipoprotein E levels in both disease states were at par with levels seen in healthy controls. The interactions of apolipoprotein E validate the results and place the differential expression of the protein in Parkinson’s disease and schizophrenia in the right perspective. Conclusion: Apolipoprotein E concentration across the dopaminergic spectrum suggests that it can be pursued not only as a potential biomarker in schizophrenia and Parkinson’s disease, but can also be an effective tool for clinicians to determine efficacy of drug-based therapy.


2020 ◽  
Vol 10 (4) ◽  
pp. 1429-1442
Author(s):  
Marianne von Euler Chelpin ◽  
Linda Söderberg ◽  
Johanna Fälting ◽  
Christer Möller ◽  
Marco Giorgetti ◽  
...  

Background: Currently, there is no established biomarker for Parkinson's disease (PD) and easily accessible biomarkers are crucial for developing disease-modifying treatments. Objective: To develop a novel method to quantify cerebrospinal fluid (CSF) levels of α-synuclein protofibrils (α-syn PF) and apply it to clinical cohorts of patients with PD and atypical parkinsonian disorders. Methods: A cohort composed of 49 patients with PD, 12 with corticobasal degeneration (CBD), 22 with progressive supranuclear palsy, and 33 controls, that visited the memory clinic but had no biomarker signs of Alzheimer’s disease (AD, tau<350 pg/mL, amyloid-beta 42 (Aβ42)>530 pg/mL, and phosphorylated tau (p-tau)<60 pg/mL) was used in this study. The CSF samples were analyzed with the Single molecule array (Simoa) technology. Total α-synuclein (α-syn) levels were analyzed with a commercial ELISA-kit. Results: The assay is specific to α-syn PF, with no cross-reactivity to monomeric α-syn, or the β- and γ-synuclein variants. CSF α-syn PF levels were increased in PD compared with controls (62.1 and 40.4 pg/mL, respectively, p = 0.03), and CBD (62.1 and 34.2 pg/mL, respectively, p = 0.02). The accuracy of predicting PD using α-syn PF is significantly different from controls (area under the curve 0.68, p = 0.0097) with a sensitivity of 62.8% and specificity of 67.7%. Levels of total α-syn were significantly different between the PD and CBD groups (p = 0.04). Conclusion: The developed method specifically quantifies α-syn PF in human CSF with increased concentrations in PD, but with an overlap with asymptomatic elderly controls.


2021 ◽  
pp. 135901
Author(s):  
Alma Cristina Salas-Leal ◽  
Sergio M. Salas-Pacheco ◽  
Alfredo Pérez Gavilán-Ceniceros ◽  
Francisco X. Castellanos-Juárez ◽  
Edna M. Méndez-Hernández ◽  
...  

2021 ◽  
Vol 34 (4) ◽  
pp. 253-262
Author(s):  
Amy Gallop ◽  
James Weagley ◽  
Saif-ur-Rahman Paracha ◽  
George Grossberg

The gut microbiota is known to play a role in various disease states through inflammatory, immune and endocrinologic response. Parkinson’s Disease is of particular interest as gastrointestinal involvement is one of the earlier features seen in this disease. This paper examines the relationship between gut microbiota and Parkinson’s Disease, which has a growing body of literature. Inflammation caused by gut dysbiosis is thought to increase a-synuclein aggregation and worsen motor and neurologic symptoms of Parkinson’s disease. We discuss potential treatment and supplementation to modify the microbiota. Some of these treatments require further research before recommendations can be made, such as cord blood transplant, antibiotic use, immunomodulation and fecal microbiota transplant. Other interventions, such as increasing dietary fiber, polyphenol and fermented food intake, can be made with few risks and may have some benefit for symptom relief and speed of disease progression.


2021 ◽  
Author(s):  
Thomas Kremer ◽  
Kirsten I. Taylor ◽  
Juliane Siebourg‐Polster ◽  
Thomas Gerken ◽  
Andreas Staempfli ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Chen Tian ◽  
Genliang Liu ◽  
Liyan Gao ◽  
David Soltys ◽  
Catherine Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document