scholarly journals Ultra-Widefield Swept-Source Optical Coherence Tomography Findings of Peripheral Retinal Degenerations and Breaks

2021 ◽  
Vol Volume 15 ◽  
pp. 4739-4745
Author(s):  
Ryo Kurobe ◽  
Yoshio Hirano ◽  
Shuntaro Ogura ◽  
Tsutomu Yasukawa ◽  
Yuichiro Ogura
2020 ◽  
Vol 10 (14) ◽  
pp. 4936
Author(s):  
Pingping Jia ◽  
Hong Zhao ◽  
Yuwei Qin

A high-speed, high-resolution swept-source optical coherence tomography (SS-OCT) is presented for focusing lens imaging and a k-domain uniform algorithm is adopted to find the wave number phase equalization. The radius of curvature of the laser focusing lens was obtained using a curve-fitting algorithm. The experimental results demonstrate that the measuring accuracy of the proposed SS-OCT system is higher than the laser confocal microscope. The SS-OCT system has great potential for surface topography measurement and defect inspection of the focusing lens.


Author(s):  
José Ignacio Fernández-Vigo ◽  
Hang Shi ◽  
Bárbara Burgos-Blasco ◽  
Lucía De-Pablo-Gómez-de-Liaño ◽  
Ignacio Almorín-Fernández-Vigo ◽  
...  

2021 ◽  
pp. 153537022110285
Author(s):  
Hao Zhou ◽  
Tommaso Bacci ◽  
K Bailey Freund ◽  
Ruikang K Wang

The choroid provides nutritional support for the retinal pigment epithelium and photoreceptors. Choroidal dysfunction plays a major role in several of the most important causes of vision loss including age-related macular degeneration, myopic degeneration, and pachychoroid diseases such as central serous chorioretinopathy and polypoidal choroidal vasculopathy. We describe an imaging technique using depth-resolved swept-source optical coherence tomography (SS-OCT) that provides full-thickness three-dimensional (3D) visualization of choroidal anatomy including topographical features of individual vessels. Enrolled subjects with different clinical manifestations within the pachychoroid disease spectrum underwent 15 mm × 9 mm volume scans centered on the fovea. A fully automated method segmented the choroidal vessels using their hyporeflective lumens. Binarized choroidal vessels were rendered in a 3D viewer as a vascular network within a choroidal slab. The network of choroidal vessels was color depth-encoded with a reference to the Bruch’s membrane segmentation. Topographical features of the choroidal vasculature were characterized and compared with choroidal imaging obtained with indocyanine green angiography (ICGA) from the same subject. The en face SS-OCT projections of the larger choroid vessels closely resembled to that obtained with ICGA, with the automated SS-OCT approach proving additional depth-encoded 3D information. In 16 eyes with pachychoroid disease, the SS-OCT approach added clinically relevant structural details, including choroidal thickness and vessel depth, which the ICGA studies could not provide. Our technique appears to advance the in vivo visualization of the full-thickness choroid, successfully reveals the topographical features of choroidal vasculature, and shows potential for further quantitative analysis when compared with other choroidal imaging techniques. This improved visualization of choroidal vasculature and its 3D structure should provide an insight into choroid-related disease mechanisms as well as their responses to treatment.


2021 ◽  
pp. 247412642199733
Author(s):  
Kyle D. Kovacs ◽  
M. Abdallah Mahrous ◽  
Luis Gonzalez ◽  
Benjamin E. Botsford ◽  
Tamara L. Lenis ◽  
...  

Purpose: This work aims to evaluate the clinical utility and feasibility of a novel scanning laser ophthalmoscope-based navigated ultra-widefield swept-source optical coherence tomography (UWF SS-OCT) imaging system. Methods: A retrospective, single-center, consecutive case series evaluated patients between September 2019 and October 2020 with UWF SS-OCT (modified Optos P200TxE, Optos PLC) as part of routine retinal care. The logistics of image acquisition, interpretability of images captured, nature of the peripheral abnormality, and clinical utility in management decisions were recorded. Results: Eighty-two eyes from 72 patients were included. Patients were aged 59.4 ± 17.1 years (range, 8-87 years). During imaging, 4.4 series of images were obtained in 4.1 minutes, with 86.4% of the image series deemed to be diagnostic of the peripheral pathology on blinded image review. The most common pathologic findings were chorioretinal scars (18 eyes). In 31 (38%) eyes, these images were meaningful in supporting clinical decision-making with definitive findings. Diagnoses imaged included retinal detachment combined with retinoschisis, retinal hole with overlying vitreous traction and subretinal fluid, vitreous inflammation overlying a peripheral scar, Coats disease, and peripheral retinal traction in sickle cell retinopathy. Conclusions: Navigated UWF SS-OCT imaging was clinically practical and provided high-quality characterization of peripheral retinal lesions for all eyes. Images directly contributed to management plans, including laser, injection or surgical treatment, for a clinically meaningful set of patients (38%). Future studies are needed to further assess the value of this imaging modality and its role in diagnosing, monitoring, and treating peripheral lesions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Atsushi Fujiwara ◽  
Yuki Kanzaki ◽  
Shuhei Kimura ◽  
Mio Hosokawa ◽  
Yusuke Shiode ◽  
...  

AbstractThis retrospective study was performed to classify diabetic macular edema (DME) based on the localization and area of the fluid and to investigate the relationship of the classification with visual acuity (VA). The fluid was visualized using en face optical coherence tomography (OCT) images constructed using swept-source OCT. A total of 128 eyes with DME were included. The retina was segmented into: Segment 1, mainly comprising the inner nuclear layer and outer plexiform layer, including Henle’s fiber layer; and Segment 2, mainly comprising the outer nuclear layer. DME was classified as: foveal cystoid space at Segment 1 and no fluid at Segment 2 (n = 24), parafoveal cystoid space at Segment 1 and no fluid at Segment 2 (n = 25), parafoveal cystoid space at Segment 1 and diffuse fluid at Segment 2 (n = 16), diffuse fluid at both segments (n = 37), and diffuse fluid at both segments with subretinal fluid (n = 26). Eyes with diffuse fluid at Segment 2 showed significantly poorer VA, higher ellipsoid zone disruption rates, and greater central subfield thickness than did those without fluid at Segment 2 (P < 0.001 for all). These results indicate the importance of the localization and area of the fluid for VA in DME.


Sign in / Sign up

Export Citation Format

Share Document