scholarly journals THE ELECTRONIC PROPERTIES SIMULATION OF INDIUM NITRIDE (InN) WURTZITE NANOCRYSTAL USING DENSITY FUNCTIONAL THEORY WITH GENERALIZED GRADIENT APPROXIMATION

2016 ◽  
Vol 4 (10) ◽  
pp. 1493-1500 ◽  
Author(s):  
AskanderKhalid Kaka ◽  
◽  
AkramHashim Taha. ◽  
RSC Advances ◽  
2018 ◽  
Vol 8 (25) ◽  
pp. 13850-13856 ◽  
Author(s):  
Assa Aravindh Sasikala Devi ◽  
Iman S. Roqan

The structural stability and magnetic properties of a grain boundary (GB) formed by two ZnO single crystals oriented at 45° is investigated by density functional theory, using generalized gradient approximation (GGA) with Hubbard parameter (U).


2020 ◽  
Vol 22 (26) ◽  
pp. 14712-14719
Author(s):  
Xiaotong Yan ◽  
Yuhua Hou ◽  
Shouhong Zheng ◽  
Youlin Huang ◽  
Wei Li ◽  
...  

Herein, the feasibility of Fe substitution by Ga, Ge and As in Li2FeSiO4 in modulating its structural, mechanical, electrochemical, capacity and electronic properties was systematically studied via first-principles calculations based on density functional theory within the generalized gradient approximation with Hubbard corrections (GGA+U).


2017 ◽  
Vol 231 (7-8) ◽  
Author(s):  
Vanessa Werth ◽  
Kai Volgmann ◽  
Mazharul M. Islam ◽  
Paul Heitjans ◽  
Thomas Bredow

AbstractIn many applications it has been found that the standard generalized gradient approximation (GGA) does not accurately describe weak chemical bond and electronic properties of solids containing transition metals. In this work, we have considered the intercalation material 1T-Li


Author(s):  
Bole Chen ◽  
Gennady L. Gutsev ◽  
Weiguo Sun ◽  
Xiao-Yu Kuang ◽  
Cheng Lu ◽  
...  

The coalescence of two Fe8N as well as the structure of the Fe16N2 cluster were studied using density functional theory with the generalized gradient approximation and a basis set of...


2012 ◽  
Vol 535-537 ◽  
pp. 1291-1294 ◽  
Author(s):  
Xiu De Yang ◽  
Bo Wu ◽  
Song Zhang

By using generalized gradient approximation (GGA) scheme within the density functional theory (DFT), the electronic and magnetic properties of Hg2CuTi-type Heusler alloy Ti2FeAl were investigated. The results reveal that a 100% spin polarization appears at Fermi level (εF) in Ti2FeAl, and is maintained during lattice range of 5.1Å~6.2Å. Ti2FeAl is one of stable Half-Metallic Ferromagnets (HMF) with a spin-minority gap of 0.5 eV at εF and total magnetic moment of 1μB per unit cell. Our studies also indicate that the competition between RKKY-type indirect exchange and direct hybridization of d-electronic atoms plays a dominating role in determining the magnetism.


2020 ◽  
Vol 10 (11) ◽  
pp. 3914
Author(s):  
Per Söderlind ◽  
Aurélien Perron ◽  
Emily E. Moore ◽  
Alexander Landa ◽  
Tae Wook Heo

Density-functional theory (DFT) is employed to investigate the thermodynamic and ground-state properties of bulk uranium tri-iodide, UI3. The theory is fully relativistic and electron correlations, beyond the DFT and generalized gradient approximation, are addressed with orbital polarization. The electronic structure indicates anti-ferromagnetism, in agreement with neutron diffraction, with band gaps and a non-metallic system. Furthermore, the formation energy, atomic volume, crystal structure, and heat capacity are calculated in reasonable agreement with experiments, whereas for the elastic constants experimental data are unavailable for comparison. The thermodynamical properties are modeled within a quasi-harmonic approximation and the heat capacity and Gibbs free energy as functions of temperature agree with available calculation of phase diagram (CALPHAD) thermodynamic assessment of the experimental data.


2016 ◽  
Vol 23 (05) ◽  
pp. 1650037
Author(s):  
FRANK MALDONADO ◽  
ARVIDS STASHANS

Density functional theory (DFT) within the generalized gradient approximation (GGA) has been used to investigate possible adsorption configurations of benzoyl peroxide (BPO) molecule on the chromium oxide ([Formula: see text]-Cr2O[Formula: see text] (0001) surface. Two configurations are found to lead to the molecular adsorption with corresponding adsorption energies being equal to [Formula: see text]0.16 and [Formula: see text]0.48[Formula: see text]eV, respectively. Our work describes in detail atomic displacements for both crystalline surface and adsorbate as well as discusses electronic and magnetic properties of the system. The most favorable adsorption case is found when the chemical bond between one of the molecular oxygens and one of the surface Cr atoms has been formed.


2018 ◽  
Vol 5 (6) ◽  
pp. 180359 ◽  
Author(s):  
Yuya Nagasawa ◽  
Takeshi Koyama ◽  
Susumu Okada

The energetics and geometries of perylene encapsulated in carbon nanotubes (CNTs) have been investigated employing density functional theory using the generalized gradient approximation combined with the van der Waals correction. Our calculations show that the encapsulated perylene molecules possess two metastable molecular conformations with respect to the CNT wall, which are almost degenerate with each other. A standing conformation, with respect to the CNT wall, is the ground state conformation for a semiconducting (19,0)CNT, while a lying conformation is the ground state for a metallic (11,11)CNT. Cooperation and competition between perylene–perylene and perylene–CNT interactions cause these possible perylene conformations inside CNTs. However, the electronic structure of the CNT encapsulating the perylene molecules is found to be insensitive to the molecular conformation.


Sign in / Sign up

Export Citation Format

Share Document