Identification of Student Academic Performance using the KNN Algorithm
Students are an important asset in the world of education also an institution and therefore also need to pay attention to students' graduation rates on time. The ups and downs of the percentage of students' abilities in classroom learning is one important element for assessing university accreditation. Therefore, it is necessary to monitor and evaluate teaching and learning activities using the KNN Algorithm classification. By processing student complaints data and seeing the results of previous learning can obtain important things for higher education needs. In predicting graduation rates based on complaints, this study uses the K-Nearest Neighbor classification algorithm by grouping data k = 1, k = 2, k = 3 with the smallest value possible. In experiments using the KNN method the results were clearly visible and showed quite good accuracy. From the experiment it was concluded that if there were fewer complaints from one student it could minimize the level of student non-graduates at the university and ultimately produce good accreditation.