Assessment of Above Ground Biomass and Fire Risk Zonation in Selected Forest Areas of LudhiKhola Watershed, Gorkha Nepal

2018 ◽  
Vol 2 (1) ◽  
pp. 47-64
Author(s):  
Shiva Pokhre

The drive for robust, accurate and cost-effective methods for biomass estimation over large areas is ever great with the launch of carbon crediting mechanisms in the developing countries such as UN-REDD [United Nations Programme on Reducing Emissions from Deforestation and Forest Degradation] and climate change mitigation program. Traditional ground based measurement requires abundant manpower, resources, cost and time. Remote sensing based technologies pertinently answer the need of time in enhancing the successful implementation of such programs. The region growing and valley following algorithm used to delineate individual tree crowns produced a segmentation accuracy of 59.35% and 54.83%, respectively. Both algorithms have similar approaches for delineation. Above ground biomass was calculated using allometric equation form and height, diameter measured from the field. Linear regression models were applied to derive the relation of biomass with crown projection area, field measured height with biomass. All models were significant at 95% confidence level and the lowest Root Mean Square Error (RMSE %) of 27.45 % (Shorea robusta) and 33.33% (others species). The total amount of biomass stocks was approximately 30620 Kg/ha-1. For forest fire hazard zonation an Analytic Hierarchy Process (AHP) method was used .The result show that 11% of the study area falls under very low fire risk zone, 55 % falls under low fire risk zone and 30 % falls under moderate fire potential zone while 4% of area falls under high forest fire risk zone. The map is also validated through major past fire incidents. The results show that the predicted fire zones are found to be in good agreement with past fire incidents, and hence, the map can be used for future forest resources management.

2021 ◽  
pp. 177-195
Author(s):  
Sk Mujibar Rahaman ◽  
Masjuda Khatun ◽  
Sanjoy Garai ◽  
Pulakesh Das ◽  
Sharad Tiwari

2019 ◽  
Vol 47 (12) ◽  
pp. 2047-2060 ◽  
Author(s):  
H. Yathish ◽  
K. V. Athira ◽  
K. Preethi ◽  
U. Pruthviraj ◽  
Amba Shetty

2005 ◽  
Vol 16 (3) ◽  
pp. 169-174 ◽  
Author(s):  
Xu Dong ◽  
Dai Li-min ◽  
Shao Guo-fan ◽  
Tang Lei ◽  
Wang Hui

2000 ◽  
Vol 48 (6) ◽  
pp. 707 ◽  
Author(s):  
W. H. Burrows ◽  
M. B. Hoffmann ◽  
J. F. Compton ◽  
P. V. Back ◽  
L. J. Tait

Allometric equations are presented relating stem circumference to branch, leaf, trunk, bark, total above-ground and lignotuber biomass for Eucalyptus crebra F.Muell. (woodland trees), E. melanophloia Sol. Ex Gaerth. (both woodland and regrowth community trees) and E. populnea F.Muell. (woodland trees). There were no significant differences (P > 0.05) between the slopes of individual lognormal regression lines plotting stem circumference against total above-ground biomass for E. crebra, E. melanophloia and E. populnea. Root-to-shoot ratios and leaf area indices were also determined for the stands contributing to each regression. The regressions were then applied to measured eucalypt stems in the associated plant community to give estimates of each stand’s component (eucalypt tree fraction only) biomass per hectare. These eucalypt regressions were next applied to measured stems of each species on a total of 33 woodland sites in which these eucalypts individually contributed > 75% of total site basal area. Above-ground biomass/basal area relationships averaged 6.74 0.29 t m–2 basal area for 11 E. crebra sites, 5.11 0.28 t m–2 for 12 E. melanophloia sites and 5.81 0.11 t m–2 for 10 E. populnea sites. The mean relationship for all sites was 5.86 0.18 t m–2 basal area. The allometric relationships presented at both individual tree and stand levels, along with calculated biomass : basal area relationships, enable ready estimates to be made of above-ground biomass (carbon stocks) in woodlands dominated by these eucalypts in Queensland, assuming individual stem circumferences or community basal areas are known. However, to document changes in carbon stocks (e.g. for Greenhouse Gas Inventory or Carbon Offset trading purposes), more attention needs to be placed on monitoring fluxes in the independent variables (predictors) of these allometric equations.


Author(s):  
K. Pandey ◽  
S. K. Ghosh

<p><strong>Abstract.</strong> Forest fire has been regarded as one of the major reasons for the loss of biodiversity and dreadful conditions of environment. Global warming is also increasing the incidence of forest fire at an alarming rate. That’s why, one need to understand the complex biophysical parameters, which are responsible for this disaster. As it is difficult to predict forest fire, fire risk zone map can be useful for combating the forest fire. So the main aim of this study is to generate a Fire risk model to map fire risk zone using Remote Sensing &amp; GIS technique. Pauri Garhwal District, located in Uttarakhand, India, has been selected for this study as it continually faces the problem of forest fire. Landsat-8 data of 18th April, 2016 have been used for land use land cover mapping. Slope and other information have been derived from topographic maps and field information. For thematic and topographic information analysis ArcGIS and ERDAS Imagine software have been used. Forest fire risk model was generated by using AHP method, where each category was assigned subjective weight according to their sensitivity to fire. Three categories of forest fire risk ranging from very high to low were derived. The generated forest fire risk model was found to be in strong agreement with actual fire-affected sites.</p>


2004 ◽  
Vol 14 (3) ◽  
pp. 251-257 ◽  
Author(s):  
Hai-wei Yin ◽  
Fan-hua Kong ◽  
Xiu-zhen Li

2020 ◽  
Vol 20 ◽  
pp. 01003
Author(s):  
Ariesta Lestari ◽  
Katriani Puspita Ayu

Forest fire is one of environmental problem happens in Central Kalimantan. The fire does not only damage the forest ecosystem and biodiversity but also threaten the health and socio-economic of local people. Forest fire in Central Kalimantan is widely known as human-made, such as the process of shifting cultivation and land clearing. The expansion of forest into palm oil plantation is often blamed as the cause of forest fire since the forest clearing involves a massive amount of fires. Therefore, this study aims to explore whether the existence of palm oil cultivation contributes to the occurrence of forest fires. We used satellite imagery of hotspot, and overlay it with the land use data to generate the fire risk zone map using geographic information system (GIS) method. Through the map, the risk of fire can be monitored in advance to help the fire authority provide the act of mitigation. The result of this study suggested that risk mapping is vital for forest fire management to mitigate the spread of forest fire. The region to be fire-prone within the palm oil cultivation is suggested to form a preventive act through active forest-fires monitoring. In sum, this study is expected to provide a map of forest fires' risk around the cultivation area, mainly palm oil plantation, and help the fire authorities as well as stakeholders to identify the risk zone for fires prevention in the future.


2020 ◽  
Vol 17 ◽  
pp. 155-173
Author(s):  
Bikram Singh ◽  
Menuka Maharjan ◽  
Mahendra Singh Thapa

Wildfire is one of the major destructive hazards which have significant effect on environment, society, and economy. However, limited studies have been carried out on spatial and temporal distribution of wildfire, especially in developing countries like Nepal. The objective of this study was to assess wildfire risk zonation of Sudurpaschim province of Nepal by applying Remote Sensing and GIS. Sudurpaschim province has been divided into four fire risk zones i.e., high, moderate, low and no risk zone. In Sudurpaschim province, about 30.84% area falls under high fire risk zone followed by moderate risk (58.30%), low risk (10.13%) and no risk (0.72%). Among five physiographic regions, Siwalik region is more susceptible to fire due to various factors, such as deciduous forest, topography, terrain, etc. From 2012 to 2019, about 44,342 fire incidences were reported in this province. Approximately 88% wildfire was recorded in spring, the season being dry. Overall, geographically Siwalik region and temporarily spring season should be in high priority for developing and implementing wildfire management activities in Sudurpaschim province.


Sign in / Sign up

Export Citation Format

Share Document