scholarly journals Semi analytical solution of a rigid pavement under a moving load on a Kerr foundation model

2018 ◽  
Vol 20 (5) ◽  
pp. 2165-2174 ◽  
Author(s):  
Buntara S. Gan ◽  
Sofia W. Alisjahbana ◽  
Irene Alisjahabana ◽  
Shota Kiryu
2019 ◽  
Vol 56 (2) ◽  
pp. 142-150
Author(s):  
Qiang Feng ◽  
Shenggang Fu ◽  
Chengxiang Wang ◽  
Wei Wei Liu

2021 ◽  
Vol 17 (1) ◽  
pp. 75-93
Author(s):  
Mustapha Adewale Usman ◽  
Nur Nabilah Afja Mohd Afandi ◽  
Fatai Akangbe Hammed ◽  
Debora Oluwatobi Daniel

Analytical solution for the boundary value problem (BVP) of elastic beams subjected to distributed load was investigated. Based on the study, dynamic application curves are developed for beam deflection. The partial differential equation of order four were analysed to determine the dynamic response of the elastic beam under consideration and solved analytically. Effects of different parameters such as the mass of the load, the length of the moving load, the distance covered by the moving load, the speed of the moving and the axial force were considered. Result revealed that the values of the deflection with acceleration being considered are higher than the system where acceleration of the moving load is negligible. These obtained results are in agreement with the existing results.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Zhipeng Lai ◽  
Lizhong Jiang ◽  
Wangbao Zhou

Based on Euler–Bernoulli beam theory, first, partial differential equations were established for the vibration of multiple simply supported beams subjected to moving loads. Then, integral transforms were conducted on the spatial displacement coordinate and time in the partial differential equations, and the frequency-domain response of multiple simply supported beams subjected to moving loads was obtained. Next, by conducting the corresponding inverse transforms on the displacement frequency-domain responses of multiple simply supported beams, the spatial displacement time-domain responses were obtained. Finally, to validate the analytical method reported in this paper, the dynamic response of a typical double simply supported rail-bridge beam system of high-speed railway in China subjected to a moving load was carried out. The results show that the analytical solution proposed in this paper is consistent with the results obtained from a finite element analysis, validating and rationalizing the analytical solution. Moreover, the system parameters were analyzed for the dynamic response of double simply supported rail-bridge beam system in high-speed railway subjected to a moving load with different speeds; the conclusions can be beneficial for engineering practice.


2021 ◽  
Vol 17 (1) ◽  
pp. 17-38
Author(s):  
Mustapha Adewale Usman ◽  
Fatai Akangbe Hammed ◽  
Debora Oluwatobi Daniel

The study of dynamic response of beam-like structures to moving or static loads has attracted and still attracting a lot of attention due to its wide range of applications in the construction and transportation industry especially when transverse by travelling masses. Hence, analytical solution for the boundary value problem (BVP) of elastic beams subjected to distributed load was investigated. The partial differential equation of order four were analysed to determine the dynamic response of the elastic beam under consideration and solved analytically. Effects of different parameters such as the mass of the load, the length of the moving load, the distance covered by the moving load, the speed of the moving and the axial force were considered. Result revealed that the values of the deflection with acceleration being considered increases than the system where acceleration of the moving load is negligible.


2021 ◽  
Vol 4 (2) ◽  
pp. 99-110
Author(s):  
Baran Bozyigit

In this study, the dynamic response of beams resting on two-parameter elastic foundation subjected to moving load is investigated by using the transfer matrix method (TMM). The Timoshenko beam theory (TBT) which considers shear deformation and rotational inertia is used to model the beam. The two-parameter elastic foundation model is selected as Pasternak foundation that takes into account a shear layer at the end of linear springs of Winkler foundation. The TMM which uses the relation between analytically obtained state vectors of each end of the beam is applied to solve the free vibration problem. After performing the free vibration analysis, the mathematical model is simplified into an equivalent single degree of freedom (SDOF) system by using the exact mode shapes to obtain dynamic responses. The generalized displacement is calculated for each mode by using the Runge-Kutta algorithm. A numerical case study is presented for a simply-supported Timoshenko beam on the Pasternak foundation subjected to a concentrated load. The natural frequencies obtained from finite element method (FEM) results of SAP2000 are presented with the results of TMM for comparison purposes using the Winkler foundation. The effects of shear layer on the natural frequencies of the model are revealed. The mode shapes are plotted. The proposed approach for calculating dynamic responses is validated by using the results of FEM for Winkler foundation model. Then, the effects of Winkler springs and shear layer of the foundation model on the dynamic responses are presented in figures. The effects of modal damping are discussed. Finally, the critical velocities for the model are calculated for various elastic foundation scenarios and the effects of elastic foundation parameters on the dynamic response of beam model subjected to moving load with high velocity are observed.


Sign in / Sign up

Export Citation Format

Share Document