scholarly journals The role of mechanical testing in additive manufacturing: review

Author(s):  
Venkesh Agarwal ◽  
Samidha Jawade ◽  
Sagar Atre ◽  
Omkar Kulkarni
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
J. Norberto Pires ◽  
Amin S. Azar ◽  
Filipe Nogueira ◽  
Carlos Ye Zhu ◽  
Ricardo Branco ◽  
...  

Purpose Additive manufacturing (AM) is a rapidly evolving manufacturing process, which refers to a set of technologies that add materials layer-by-layer to create functional components. AM technologies have received an enormous attention from both academia and industry, and they are being successfully used in various applications, such as rapid prototyping, tooling, direct manufacturing and repair, among others. AM does not necessarily imply building parts, as it also refers to innovation in materials, system and part designs, novel combination of properties and interplay between systems and materials. The most exciting features of AM are related to the development of radically new systems and materials that can be used in advanced products with the aim of reducing costs, manufacturing difficulties, weight, waste and energy consumption. It is essential to develop an advanced production system that assists the user through the process, from the computer-aided design model to functional components. The challenges faced in the research and development and operational phase of producing those parts include requiring the capacity to simulate and observe the building process and, more importantly, being able to introduce the production changes in a real-time fashion. This paper aims to review the role of robotics in various AM technologies to underline its importance, followed by an introduction of a novel and intelligent system for directed energy deposition (DED) technology. Design/methodology/approach AM presents intrinsic advantages when compared to the conventional processes. Nevertheless, its industrial integration remains as a challenge due to equipment and process complexities. DED technologies are among the most sophisticated concepts that have the potential of transforming the current material processing practices. Findings The objective of this paper is identifying the fundamental features of an intelligent DED platform, capable of handling the science and operational aspects of the advanced AM applications. Consequently, we introduce and discuss a novel robotic AM system, designed for processing metals and alloys such as aluminium alloys, high-strength steels, stainless steels, titanium alloys, magnesium alloys, nickel-based superalloys and other metallic alloys for various applications. A few demonstrators are presented and briefly discussed, to present the usefulness of the introduced system and underlying concept. The main design objective of the presented intelligent robotic AM system is to implement a design-and-produce strategy. This means that the system should allow the user to focus on the knowledge-based tasks, e.g. the tasks of designing the part, material selection, simulating the deposition process and anticipating the metallurgical properties of the final part, as the rest would be handled automatically. Research limitations/implications This paper reviews a few AM technologies, where robotics is a central part of the process, such as vat photopolymerization, material jetting, binder jetting, material extrusion, powder bed fusion, DED and sheet lamination. This paper aims to influence the development of robot-based AM systems for industrial applications such as part production, automotive, medical, aerospace and defence sectors. Originality/value The presented intelligent system is an original development that is designed and built by the co-authors J. Norberto Pires, Amin S. Azar and Trayana Tankova.


2020 ◽  
Vol 26 ◽  
pp. 3071-3080 ◽  
Author(s):  
Tarun Grover ◽  
Anamika Pandey ◽  
Soni Tiwari Kumari ◽  
Ankita Awasthi ◽  
Bharat Singh ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 1471 ◽  
Author(s):  
Santiago Cano ◽  
Ali Gooneie ◽  
Christian Kukla ◽  
Gisbert Rieß ◽  
Clemens Holzer ◽  
...  

The adhesion of the polymer to ceramic nanoparticles is a key aspect in the manufacturing of ceramic parts by additive manufacturing and injection molding, due to poor separation results in separation during processing. The purpose of this research is to investigate, by means of molecular dynamics simulations and experimental methods, the role of improved interfacial interactions by acrylic acid grafting-high density polyethylene on the adhesion to zirconia nanoparticles and on the composite properties. The polymer grafting results in high adhesion to the nanoparticles, increases the nanoparticles dispersion and improves the viscoelastic and mechanical properties required for additive manufacturing and injection molding.


Sign in / Sign up

Export Citation Format

Share Document