scholarly journals THE VISION OF FRACTURE TOUGHNESS ASSESSMENT OF STRUCTURAL MATERIALS FOR QUALITY CONTROL AT THE MANUFACTURING STAGE

Author(s):  
RAY K.
2012 ◽  
Vol 736 ◽  
pp. 192-206 ◽  
Author(s):  
Kalyan Kumar Ray

Existing standard International methods to estimate fracture toughness of structural materials as documented in ASTM standard E-1820 are neither appropriate for material development due to the requirement of considerable volume nor suitable for process optimizations like deciding suitable heat treatment or for quality control of tonnage materials at the stage of production due to techno-economic reasons owing to their time-consuming nature. This report overviews several investigations often in their feasibility stage and aims to suggest a common solution to all these problems considering measurement of fracture toughness (KIVM) using chevron notched bend bar specimens with either rectangular cross-section (RC) or circular cross-section (CC). At the outset the theoretical background for obtaining KIVMRC and KIVMCC and the corresponding normalized stress intensity factors are discussed in order to illustrate the relatively simpler principle of estimation of fracture toughness. The usefulness of this technique is next illustrated using a number of examples related to: (a) design of small specimens for fracture toughness determination using this principle (b) optimization of the volume fraction of the constituent phases in dual phase steels, (c) design of heat treatment for cast rolls, (d) optimization of cryotreatment for tool steels and (e) study of the effect of inclusions on toughness characteristics of microalloyed steels. The examples related to (a) is for demonstrating the capability of this technique for material development, that related to (b), (c) and (d) are to illustrate its potential for process optimization and the one related to (e) is to illustrate its potential for quality control of tonnage materials.


Author(s):  
Hussain Alghahtani ◽  
Seyed M. Allameh

Biomimicked composites have shown to be superior to monolithic structural materials. However, they need reinforcement to replace conventional load-bearing structural composites. Carbon Fibers in long and short forms were used as reinforcement in biomimicked composites. Mechanical tests including four point bending were conducted to determine the effects of form and volume fraction of fibers on the fracture toughness of the biomimicked composites.


1984 ◽  
pp. 334-409

Abstract Hardness tests provide valuable information about the quality of materials and how they are likely to perform in different types of service. This chapter covers some of the most widely used hardness testing methods, including Vickers, Rockwell, and Brinell tests, Shore scleroscope and Equotip hardness tests, and microindentation tests. It describes the equipment and procedures used, discusses the factors that influence accuracy, and provides hardness conversion equations for different types of materials. It also explains how hardness testing sheds light on anisotropy, machinability, wear, fracture toughness, and tensile strength as well as temperature effects, residual stress, and quality control.


Sign in / Sign up

Export Citation Format

Share Document