Distributional patterns of benthic invertebrates at some meso-habitats of sandy riverbed of a mountain stream in Japan

2013 ◽  
Vol 17 (2) ◽  
pp. 13-35
Author(s):  
Khaled Abdelsalam
2012 ◽  
Vol 1 (1) ◽  
pp. 75-90
Author(s):  
Jong Yeon Sang Heon ◽  
Sang Heon Yi ◽  
Jong Wook Kim
Keyword(s):  

Author(s):  
Mauro Gobbi ◽  
Valeria Lencioni

Carabid beetles and chironomid midges are two dominant cold-adapted taxa, respectively on glacier forefiel terrains and in glacial-stream rivers. Although their sensitivity to high altitude climate warming is well known, no studies compare the species assemblages exhibited in glacial systems. Our study compares diversity and distributional patterns of carabids and chironomids in the foreland of the receding Amola glacier in central-eastern Italian Alps. Carabids were sampled by pitfall traps; chironomids by kick sampling in sites located at the same distance from the glacier as the terrestrial ones. The distance from the glacier front was considered as a proxy for time since deglaciation since these variables are positively correlated. We tested if the distance from the glacier front affects: i) the species richness; ii) taxonomic diversity; and iii) species turnover. Carabid species richness and taxonomic diversity increased positively from recently deglaciated sites (those c. 160 m from the glacier front) to sites deglaciated more than 160yrs ago (those located >1300 m from glacier front). Species distributions along the glacier foreland were characterized by mutually exclusive species. Conversely, no pattern in chironomid species richness and turnover was observed. Interestingly, taxonomic diversity increased significantly: closely related species were found near the glacier front, while the most taxonomically diverse species assemblages were found distant from the glacier front. Increasing glacial retreat differently affect epigeic and aquatic insect taxa: carabids respond faster to glacier retreat than do chironomids, at least in species richness and species turnover patterns.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 990
Author(s):  
Tariq M. Munir ◽  
Cherie J. Westbrook

Beaver dam analogues (BDAs) are becoming an increasingly popular stream restoration technique. One ecological function BDAs might help restore is suitable habitat conditions for fish in streams where loss of beaver dams and channel incision has led to their decline. A critical physical characteristic for fish is stream temperature. We examined the thermal regime of a spring-fed Canadian Rocky Mountain stream in relation to different numbers of BDAs installed in series over three study periods (April–October; 2017–2019). While all BDA configurations significantly influenced stream and pond temperatures, single- and double-configuration BDAs incrementally increased stream temperatures. Single and double configuration BDAs warmed the downstream waters of mean maxima of 9.9, 9.3 °C by respective mean maxima of 0.9 and 1.0 °C. Higher pond and stream temperatures occurred when ponding and discharge decreased, and vice versa. In 2019, variation in stream temperature below double-configuration BDAs was lower than the single-configuration BDA. The triple-configuration BDA, in contrast, cooled the stream, although the mean maximum stream temperature was the highest below these structures. Ponding upstream of BDAs increased discharge and resulted in cooling of the stream. Rainfall events sharply and transiently reduced stream temperatures, leading to a three-way interaction between BDA configuration, rainfall and stream discharge as factors co-influencing the stream temperature regime. Our results have implications for optimal growth of regionally important and threatened bull and cutthroat trout fish species.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 169
Author(s):  
Danai-Eleni Michailidou ◽  
Maria Lazarina ◽  
Stefanos P. Sgardelis

The ongoing climate change and the unprecedented rate of biodiversity loss render the need to accurately project future species distributional patterns more critical than ever. Mounting evidence suggests that not only abiotic factors, but also biotic interactions drive broad-scale distributional patterns. Here, we explored the effect of predator-prey interaction on the predator distribution, using as target species the widespread and generalist grass snake (Natrix natrix). We used ensemble Species Distribution Modeling (SDM) to build a model only with abiotic variables (abiotic model) and a biotic one including prey species richness. Then we projected the future grass snake distribution using a modest emission scenario assuming an unhindered and no dispersal scenario. The two models performed equally well, with temperature and prey species richness emerging as the top drivers of species distribution in the abiotic and biotic models, respectively. In the future, a severe range contraction is anticipated in the case of no dispersal, a likely possibility as reptiles are poor dispersers. If the species can disperse freely, an improbable scenario due to habitat loss and fragmentation, it will lose part of its contemporary distribution, but it will expand northwards.


Author(s):  
Allison L. K. Banting ◽  
Mark K. Taylor ◽  
Rolf D. Vinebrooke ◽  
Chris M. Carli ◽  
Mark S. Poesch

Sign in / Sign up

Export Citation Format

Share Document