scholarly journals Implementing an Algorithm for Locating Complex Zeros of Analytical Functions in the Complex Plane

Author(s):  
Nellie McKinney ◽  
Josefa Guerrero-Millan
2017 ◽  
Vol 6 (2) ◽  
pp. 18-37 ◽  
Author(s):  
Vijaya Lakshmi V. Nadimpalli ◽  
Rajeev Wankar ◽  
Raghavendra Rao Chillarige

In this article, an innovative Genetic Algorithm is proposed to find potential patches enclosing roots of real valued function f:R→R. As roots of f can be real as well as complex, the function is reframed on to complex plane by writing it as f(z). Thus, the problem now is transformed to finding potential patches (rectangles in C) enclosing z such that f(z)=0, which is resolved into two components as real and imaginary parts. The proposed GA generates two random populations of real numbers for the real and imaginary parts in the given regions of interest and no other initial guesses are needed. This is the prominent advantage of the method in contrast to various other methods. Additionally, the proposed ‘Refinement technique' aids in the exhaustive coverage of potential patches enclosing roots and reinforces the selected potential rectangles to be narrow, resulting in significant search space reduction. The method works efficiently even when the roots are closely packed. A set of benchmark functions are presented and the results show the effectiveness and robustness of the new method.


Author(s):  
A. P. Shilin

In this paper, we study an integro-differential equation on a closed curve located on the complex plane. The integrals included in the equation are understood as a finite part by Hadamard. The coefficients of the equation have a particular structure. The analytical continuation method is applied. The equation is reduced to a boundary value linear conjugation problem for analytic functions and linear Euler differential equations in the domains of the complex plane. Solutions of the Euler equations, which are unambiguous analytical functions, are sought. The conditions of solvability of the initial equation are given explicitly. The solution of the initial equation obtained under these conditions is also given explicitly. Examples are considered.


2014 ◽  
Vol 12 (05) ◽  
pp. 537-561 ◽  
Author(s):  
Amparo Gil ◽  
Javier Segura

We study the distribution of zeros of general solutions of the Airy and Bessel equations in the complex plane. Our results characterize the patterns followed by the zeros for any solution, in such a way that if one zero is known it is possible to determine the location of the rest of zeros.


2020 ◽  
Vol 17 (2) ◽  
pp. 256-277
Author(s):  
Ol'ga Veselovska ◽  
Veronika Dostoina

For the derivatives of Chebyshev second-kind polynomials of a complex vafiable, a system of functions biorthogonal with them on closed curves of the complex plane is constructed. Properties of these functions and the conditions of expansion of analytic functions in series in polynomials under consideration are established. The examples of such expansions are given. In addition, we obtain some combinatorial identities of independent interest.


Author(s):  
A. F. Beardon

AbstractThe positive solutions of the equation $$x^y = y^x$$ x y = y x have been discussed for over two centuries. Goldbach found a parametric form for the solutions, and later a connection was made with the classical Lambert function, which was also studied by Euler. Despite the attention given to the real equation $$x^y=y^x$$ x y = y x , the complex equation $$z^w = w^z$$ z w = w z has virtually been ignored in the literature. In this expository paper, we suggest that the problem should not be simply to parametrise the solutions of the equation, but to uniformize it. Explicitly, we construct a pair z(t) and w(t) of functions of a complex variable t that are holomorphic functions of t lying in some region D of the complex plane that satisfy the equation $$z(t)^{w(t)} = w(t)^{z(t)}$$ z ( t ) w ( t ) = w ( t ) z ( t ) for t in D. Moreover, when t is positive these solutions agree with those of $$x^y=y^x$$ x y = y x .


2021 ◽  
Vol 5 (1) ◽  
pp. 25
Author(s):  
Víctor Galilea ◽  
José M. Gutiérrez

The purpose of this work is to give a first approach to the dynamical behavior of Schröder’s method, a well-known iterative process for solving nonlinear equations. In this context, we consider equations defined in the complex plane. By using topological conjugations, we characterize the basins of attraction of Schröder’s method applied to polynomials with two roots and different multiplicities. Actually, we show that these basins are half-planes or circles, depending on the multiplicities of the roots. We conclude our study with a graphical gallery that allow us to compare the basins of attraction of Newton’s and Schröder’s method applied to some given polynomials.


Sign in / Sign up

Export Citation Format

Share Document