Membrane-media active collaboration (M-MAC): an alternative for solid-liquid separation in drinking water treatment

2007 ◽  
Vol 56 (6-7) ◽  
pp. 357-363
Author(s):  
T. Sasaki ◽  
T. Hanamoto ◽  
K. Ogura ◽  
M. Oya ◽  
M. Itoh ◽  
...  
Author(s):  
Gomes CEP ◽  
Oliveira HA ◽  
Azevedo AC ◽  
Rubio J

In drinking water treatment plants, chemical reagents are employed to aggregate and remove suspended particles. However, not all reagents are eco-friendly and exists concerns over environmental, economic, and health issues. This study shows features of the sustainability of commercial coagulants/flocculants and presents experimental research on floc characterization and settling of dispersed solids with a combination of Ferric Chloride (FeCl3 ) and gelatinized starch. Bench studies were conducted using kaolin suspensions and results were validated with raw water collected from a river (Rio dos Sinos, Brazil). Flocculation indexes, floc structure, and residual turbidities were compared with Polyaluminum Chloride (PAC), as a reference. All techniques showed that the combination of FeCl3 and starch formed well-structured, larger, and more settleable flocs than those produced with PAC. Superficial loadings, in a continuous separation tank (2 to 4 m.h-1) were studied with and without lamellae. Best results were obtained with 15 mg.L-1 Fe3+ and 10 mg.L-1 starch, with a velocity gradient, G, of 60 s-1 in the slow mixing and with 60° inclined lamellae spaced 1.3 cm apart. Best conditions were applied to the clarification of the raw water and again, due to the rapid settling of flocs with FeCl3 and starch, better results were obtained compared to PAC. A turbidity reduction of 94% and a residual value of 2.5 NTU with superficial loadings of 3 m.h-1 were obtained. Results were discussed in terms of interfacial and operating parameters and a promising potential for the combination of FeCl3 with starch for solid/liquid separation was envisaged.


2018 ◽  
Vol 63 (1) ◽  
pp. 96-112 ◽  
Author(s):  
Barış Şimşek ◽  
İnci Sevgili ◽  
Özge Bildi Ceran ◽  
Haluk Korucu ◽  
Osman Nuri Şara

One of the ways of fully securing the presence of fresh water is water treatment process. Nanomaterials and nanotechnology offers an innovative solution for water treatment. In this study, physical, chemical and microbiological improvement rates of raw water were analyzed after filtration with graphene oxide. Graphene oxide's water treatment performance; silver nanoparticles, silver nanoparticles & graphene oxide composites that are commonly used in water treatment were compared with a traditional treatment method. When compared to the traditional method, there were improvements of 50 %, 40.7 %, 86.8 % and 45.5 % for color, TIC, TOC and hardness properties, respectively in water treatment by GO-based filtration with solid liquid ratio of 0.7 % (v/v). In water treatment with GO-Ag based filtration, 39.8 %, 69.8 %, 10.3 % and 28.6 % of improvements were obtained for TIC, TOC, hardness and LSI value compared to the conventional method. Both GO at 0.7 % (v/v) solid-liquid ratio and GO-Ag nanocomposites were successful in the number of total viable microorganisms and inhibiting microorganisms such as Escherichia coli fecal (gaita-infected), Salmonella typhi, Enterococcus faecalis, Pseudomona aeruginosa and Staphylococcus aureus. Among the studied parameters GO-Ag nanocomposites found to be the most suitable for drinking water treatment.


2015 ◽  
Vol 14 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Florica Manea ◽  
Anamaria Baciu ◽  
Aniela Pop ◽  
Katalin Bodor ◽  
Ilie Vlaicu

Sign in / Sign up

Export Citation Format

Share Document