Removal of cyanotoxins in drinking water using ozone and ozone-hydrogen peroxide (peroxone)

2019 ◽  
Vol 68 (8) ◽  
pp. 655-665 ◽  
Author(s):  
Guhankumar Ponnusamy ◽  
Lijo Francis ◽  
Kavithaa Loganathan ◽  
Oluwaseun O. Ogunbiyi ◽  
Saad Jasim ◽  
...  

Abstract Presence of cyanotoxins in drinking water poses a great risk to public health. Elevated levels of cyanotoxins in drinking water can lead to acute gastroenteritis, liver diseases, and neurotoxicity. In this study, drinking water samples were collected across the eastern part of Qatar and screened using a rapid assay to detect the presence of microcystins and nodularins. The results showed that the toxin concentrations in all the water samples were below the WHO prescribed limit of 1 μg/L. Considering a worst-case scenario, toxin removal efficiencies were evaluated using ozone and ozone-hydrogen peroxide by spiking drinking water samples with microcystin-LR (MC-LR) at different oxidant dosages, toxin concentrations, water temperatures, and total organic carbon. It was found that peroxone-treated water samples have better MC-LR removal efficiency than molecular ozone at lower oxidant dosages. Nevertheless, at higher oxidant dosages, both ozonation and peroxone oxidation methods showed a similar removal efficiency. The experimental results also clearly indicated that variation in water temperature between 22 °C and 35 °C has minimal effect on the removal efficiency in both the treatment methods. It was also confirmed that the presence of organic carbon has a more profound detrimental impact than water temperature for toxin removal.

2013 ◽  
Vol 14 (4) ◽  
pp. 393-398

The occurrence of trihalomethanes (THMs) was studied in the drinking water samples from urban water supply network of Karachi city that served more than 18 million people. Drinking water samples were collected from 58 locations in summer (May-August) and winter (November-February) seasons. The major constituent of THMs detected was chloroform in winter (92.34%) and summer (93.07%), while the other THMs determined at lower concentrations. Summer and winter concentrations of total THMs at places exceed the levels regulated by UEPA (80 μg l-1) and WHO (100 μg l-1). GIS linked temporal variability in two seasons showed significantly higher median concentration (2.5%-23.06%) of THMs compared to winter.


2014 ◽  
Vol 884-885 ◽  
pp. 91-95
Author(s):  
Shang Chao Yue ◽  
Le Jun Zhao ◽  
Xiu Duo Wang ◽  
Qi Shan Wang ◽  
Feng Hua He

The objectives of this study were to investigate impact of preoxidation on disinfection by-product (DBP) precursors in drinking water via two different preoxidation methods. The full-scale study was conducted on surface river water in a water supply plant in Tianjin, China. Two treatment trains were performed, with prechlorination and preozonation as preoxidation methods, respectively. The water samples were collected on different stages along the treatment processes and analyzed by following organic parameters: dissolved organic carbon (DOC), UV254 and specific ultraviolet absorbance (SUVA). The results indicated that Train 2 with preozonation was more effective to reduce DBP precursors. Preozonation possessed an excellent ability in the removal of UV254 and SUVA, the removal efficiencies were 25.14% and 18.77%, respectively, comparing to the removal rates of 6.66% and 5.64% during prechlorination, separately.


2015 ◽  
Vol 3 (1) ◽  
pp. e983384 ◽  
Author(s):  
Marize de Lm Solano ◽  
Cassiana C Montagner ◽  
Carolina Vaccari ◽  
Wilson F Jardim ◽  
Janete A Anselmo-Franci ◽  
...  

2008 ◽  
Vol 277 (1) ◽  
pp. 155-159 ◽  
Author(s):  
I. Outola ◽  
S. Nour ◽  
H. Kurosaki ◽  
K. Inn ◽  
J. La Rosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document