scholarly journals A hybrid cuckoo–harmony search algorithm for optimal design of water distribution systems

2015 ◽  
Vol 18 (3) ◽  
pp. 544-563 ◽  
Author(s):  
Razi Sheikholeslami ◽  
Aaron C. Zecchin ◽  
Feifei Zheng ◽  
Siamak Talatahari

Meta-heuristic algorithms have been broadly used to deal with a range of water resources optimization problems over the past decades. One issue that exists in the use of these algorithms is the requirement of large computational resources, especially when handling real-world problems. To overcome this challenge, this paper develops a hybrid optimization method, the so-called CSHS, in which a cuckoo search (CS) algorithm is combined with a harmony search (HS) scheme. Within this hybrid framework, the CS is employed to find the promising regions of the search space within the initial explorative stages of the search, followed by a thorough exploitation phase using the combined CS and HS algorithms. The utility of the proposed CSHS is demonstrated using four water distribution system design problems with increased scales and complexity. The obtained results reveal that the CSHS method outperforms the standard CS, as well as the majority of other meta-heuristics that have previously been applied to the case studies investigated, in terms of efficiently seeking optimal solutions. Furthermore, the CSHS has two control parameters that need to be fine-tuned compared to many other algorithms, which is appealing for its practical application as an extensive parameter-calibration process is typically computationally very demanding.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 553 ◽  
Author(s):  
Young Choi ◽  
Joong Kim

This study proposes a multi-objective optimal design approach for water distribution systems, considering mechanical system redundancy under multiple pipe failure. Mechanical redundancy is applied to the system’s hydraulic ability, based on the pressure deficit between the pressure requirements under abnormal conditions. The developed design approach shows the relationships between multiple pipe failure states and system redundancy, for different numbers of pipe-failure conditions (e.g., first, second, third, …, tenth). Furthermore, to consider extreme demand modeling, the threshold of the demand quantity is investigated simultaneously with multiple pipe failure modeling. The design performance is evaluated using the mechanical redundancy deficit under extreme demand conditions. To verify the proposed design approach, an expanded version of the well-known benchmark network is used, configured as an ideal grid-shape, and the multi-objective harmony search algorithm is used as the optimal design approach, considering construction cost and system mechanical redundancy. This optimal design technique could be used to propose a standard for pipe failure, based on factors such as the number of broken pipes, during failure condition analysis for redundancy-based designs of water distribution systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Octavio Camarena ◽  
Erik Cuevas ◽  
Marco Pérez-Cisneros ◽  
Fernando Fausto ◽  
Adrián González ◽  
...  

The Locust Search (LS) algorithm is a swarm-based optimization method inspired in the natural behavior of the desert locust. LS considers the inclusion of two distinctive nature-inspired search mechanism, namely, their solitary phase and social phase operators. These interesting search schemes allow LS to overcome some of the difficulties that commonly affect other similar methods, such as premature convergence and the lack of diversity on solutions. Recently, computer vision experiments in insect tracking methods have conducted to the development of more accurate locust motion models than those produced by simple behavior observations. The most distinctive characteristic of such new models is the use of probabilities to emulate the locust decision process. In this paper, a modification to the original LS algorithm, referred to as LS-II, is proposed to better handle global optimization problems. In LS-II, the locust motion model of the original algorithm is modified incorporating the main characteristics of the new biological formulations. As a result, LS-II improves its original capacities of exploration and exploitation of the search space. In order to test its performance, the proposed LS-II method is compared against several the state-of-the-art evolutionary methods considering a set of benchmark functions and engineering problems. Experimental results demonstrate the superior performance of the proposed approach in terms of solution quality and robustness.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1418-1423
Author(s):  
Pasura Aungkulanon

Machining optimization problem aims to optimize machinery conditions which are important for economic settings. The effective methods for solving these problems using a finite sequence of instructions can be categorized into two groups; exact optimization algorithm and meta-heuristic algorithms. A well-known meta-heuristic approach called Harmony Search Algorithm was used to compare with Particle Swarm Optimization. We implemented and analysed algorithms using unconstrained problems under different conditions included single, multi-peak, curved ridge optimization, and machinery optimization problem. The computational outputs demonstrated the proposed Particle Swarm Optimization resulted in the better outcomes in term of mean and variance of process yields.


2018 ◽  
Vol 7 (4.6) ◽  
pp. 302
Author(s):  
Dr. Anandam Velagandula ◽  
P. Buddha Reddy ◽  
N. Hanuman Reddy ◽  
G. Srikanth Reddy ◽  
Ch Anil

As of late number of meta based heuristic algorithms are suggested to fill in as the premise of test era technique (where shows the interaction strength) embracing  with Simulated Annealing (SA), Ant Colony Optimization (ACO), Cuckoo Search (CS), Genetic Algorithms (GA), Harmony Search (HS) and Particle Swarm Optimization (PSO). Albeit helpful methodologies are requiring particular area learning so as to permit successful tuning before great quality arrangements can be gotten. The multi-target molecule swarm optimization, and multithreading is utilized to overwhelm the compound judgement criteria for an ideal arrangement. The procedure and its related algorithms are assessed broadly utilizing diverse benchmarks and examinations. In our proposed technique test cases are advanced by utilizing Particle Swarm Optimization algorithm (PSO). At that point the streamlined test cases are organized by utilizing to enhanced Cuckoo Search algorithm (ECSA). As the quantity of inserted systems increments quickly, there has been developing interest for the utilization of Service Oriented Architecture (SOA) for some requests. At last, the enhanced outcome will be assessed by programming quality measures.


Author(s):  
Christopher Expósito-Izquierdo ◽  
Airam Expósito-Márquez

The chapter at hand seeks to provide a general survey of the Cuckoo Search Algorithm and its most highlighted variants. The Cuckoo Search Algorithm is a relatively recent nature-inspired population-based meta-heuristic algorithm that is based upon the lifestyle, egg laying, and breeding strategy of some species of cuckoos. In this case, the Lévy flight is used to move the cuckoos within the search space of the optimization problem to solve and obtain a suitable balance between diversification and intensification. As discussed in this chapter, the Cuckoo Search Algorithm has been successfully applied to a wide range of heterogeneous optimization problems found in practical applications over the last few years. Some of the reasons of its relevance are the reduced number of parameters to configure and its ease of implementation.


Author(s):  
Alaa A. Alomoush ◽  
Abdul Rahman A. Alsewari ◽  
Kamal Z. Zamli ◽  
Ayat Alrosan ◽  
Waleed Alomoush ◽  
...  

Meta-heuristic algorithms are well-known optimization methods, for solving real-world optimization problems. Harmony search (HS) is a recognized meta-heuristic algorithm with an efficient exploration process. But the HS has a slow convergence rate, which causes the algorithm to have a weak exploitation process in finding the global optima. Different variants of HS introduced in the literature to enhance the algorithm and fix its problems, but in most cases, the algorithm still has a slow convergence rate. Meanwhile, opposition-based learning (OBL), is an effective technique used to improve the performance of different optimization algorithms, including HS. In this work, we adopted a new improved version of OBL, to improve three variants of Harmony Search, by increasing the convergence rate speed of these variants and improving overall performance. The new OBL version named improved opposition-based learning (IOBL), and it is different from the original OBL by adopting randomness to increase the solution's diversity. To evaluate the hybrid algorithms, we run it on benchmark functions to compare the obtained results with its original versions. The obtained results show that the new hybrid algorithms more efficient compared to the original versions of HS. A convergence rate graph is also used to show the overall performance of the new algorithms.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Thuan Thanh Nguyen ◽  
Thang Trung Nguyen ◽  
Ngoc Au Nguyen

Increasing the possible capacity of distributed generations (DGs) supplying to distribution system (DS) is a highly effective solution to attract the investment of distributed generation (DG) installation in the DS. However, the presence of DGs will affect the technical indicators of the DS. This paper determines solutions of the DG placement problem for maximizing the size of distributed generations (DGs) and improving the technical indicators consisting of power loss reduction, increasing of balance among feeders and balance among branches, and voltage deviation reduction. A max-min method is proposed to combine the membership objective functions. The location and size of DGs are optimized based on an improved cuckoo search algorithm (ICSA). The simulation results for the 84-node system show that the proposed multiobjective problem not only helps to increase the capacity of DGs but also improves the technical factors. Moreover, the DG’s uncertainty is also validated to show its negative impacts on the technical indicators of the DS. Furthermore, ICSA is worthy for finding the optimal solution for the DG placement problem.


Author(s):  
O.E. Olabode

Compensating reactive power deficiency on power grids is a central concern in the distribution of energy management systems. Several approaches have been adopted over time to minimize the total real power loss and enhancing bus voltage profile. Shunt capacitor has been used from time immemorial for addressing issue of reactive power compensation at the distribution end of power systems, and the extent of benefits derivable from its usage depend solely on correct siting and sizing. To this effect, meta-heuristic algorithms are promising optimization tools for achieving these objectives. This paper, therefore, presents a comprehensive review of cuckoo search algorithm based on optimal siting and sizing of shunt capacitors in radial distribution systems. The suitability, in addition to strengths and weakness of each approaches reported in the reviewed articles have been painstakingly x-rayed. Based on the review, it was observed that a two-stage approach is always adopted in the compensation process: the pre-selection of potential or sensitive nodes and the optimal sizing of shunt capacitors needed for the compensation. For the pre-location, Voltage Stability Index and Loss Sensitivity Factor were found to be comparatively less complex and highly suitable techniques. Another cogent discovery from this review is that less attention has been drawn to the use of cuckoo search algorithm by Nigerian researchers. Therefore, regarding Nigerian electric grid system, the use of cuckoo search algorithm in reactive power support presents a research gap for further investigations.


2013 ◽  
Vol 365-366 ◽  
pp. 170-173
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang ◽  
Li Qun Gao

This paper develops an opposition-based improved harmony search algorithm (OIHS) for solving global continuous optimization problems. The proposed method is different from the classical harmony search (HS) in three aspects. Firstly, the candidate harmony is randomly chosen from the harmony memory or opposition harmony memory was generated by opposition-based learning, which enlarged the algorithm search space. Secondly, two key control parameters, pitch adjustment rate (PAR) and bandwidth distance (bw), are adjusted dynamically with respect to the evolution of the search process. Numerical results demonstrate that the proposed algorithm performs much better than the existing HS variants in terms of the solution quality and the stability.


Sign in / Sign up

Export Citation Format

Share Document