scholarly journals Estimation of Aquifer Parameters by Least-Squares Method under Linear Flow Conditions in Fractured Rocks

1995 ◽  
Vol 26 (2) ◽  
pp. 111-124 ◽  
Author(s):  
M.L. Jat ◽  
M.S. Acharya ◽  
J. Singh

Pumping and recovery test data in phyllite formations were analysed under linear flow conditions by incorporating modification in the method proposed by Şen (1986). Although the Şen (1986) method is developed for analysis of borewell test data, this method has been used for large-diameter well-test data by taking average inflow rate in the well. The results obtained were compared with Şen's graphical method. Lower values of root mean-square error were obtained by least-squares method. The estimated values of transmissivity and storage coefficient were acceptable at 1 per cent level of significance. An advantage of the least-squares method is the automization, which is lacking in the graphical method utilising curve-matching technique.

SPE Journal ◽  
2004 ◽  
Vol 9 (04) ◽  
pp. 375-390 ◽  
Author(s):  
T. von Schroeter ◽  
F. Hollaender ◽  
A.C. Gringarten

2001 ◽  
Vol 4 (03) ◽  
pp. 221-230 ◽  
Author(s):  
D.D. Charles ◽  
H.H. Rieke ◽  
R. Purushothaman

Summary Two offshore, wedge-shaped reservoirs in south Louisiana were interpreted with pressure-buildup responses by comparing the results from simulated finite-element model studies. The importance of knowing the correct reservoir shape, and how it is used to interpret the generated boundary-pressure responses, is briefly discussed. Two different 3D computer models incorporating different wedge-shaped geometries simulated the test pressure-buildup response patterns. Variations in the two configurations are topologically expressed as a constant thickness and a nonconstant thickness, with smooth-surface, wedged-shaped reservoir models. The variable-thickness models are pinched-out updip at one end and faulted at the other end. Numerical well-test results demonstrated changes in the relationships between the pressure-derivative profile, the wellbore location, and the extent of partial penetration in the reservoir models. The wells were placed along the perpendicular bisector (top view) at distances starting from the apex at 5, 10, 20, 40, 50, 60, 80, and 90% of the reservoir length. Results demonstrate that boundary distance identification (such as distance, number, and type) based solely on the log-log derivative profile in rectangular and triangular wedge-shaped reservoirs should be strongly discouraged. Partial-penetration effects (PPE's) in wedge-shaped reservoirs are highly dependent on the wellbore location relative to the wedge, and the well-test-data analysis becomes more complex. Introduction The interpretation of the effect of reservoir shape on pressure-transient well-test data needs improvement. It is economically imperative to be able to generate an accurate estimate of reserves and producing potential. This is especially critical for independent operators who wish to participate in deepwater opportunities in the Gulf of Mexico. Proper interpretation of data extracted from cost-effective well tests is an integral part of describing, evaluating, and managing such reservoirs. Well-test information such as average reservoir pressure, transmissivity, pore volume, storativity, formation damage, deliverability, distance to the boundary, and completion efficiency are some of the technical inputs into economic and operational decisions. Several key economic decisions that operators have to make are:Should the reservoir be exploited?How many wells are needed to develop the reservoir?Is artificial lift necessary (and if so, when)? The identification of morphological demarcation components such as impermeable barriers (faults, intersecting faults, facies changes, erosional unconformities, and structural generated depositional pinchouts) and constant-pressure boundaries (aquifer or gas-cap) from well testing help to establish the reservoir boundaries, shape, and volume. One must remember that the geological entrapment structure or sedimentological body does not always define the reservoir's limits. Our present study provides insight into wedge-shaped reservoirs in the Gulf of Mexico. Seismic exploration can define geological shapes in either two or three dimensions in the subsurface. These shapes are expressions of the preserved structural history and depositional environments and are verified by observations of such structures in outcrops and present-day depositional environments. From a sedimentological viewpoint, the following sedimentary deposits can exhibit wedge-shaped geometries. Preserved barchan sand dunes, reworked transgressive sands, barrier-island sands, offshore bars, alluvial fan deposits, delta-front sheet sands, and lenticular channel sands form the more plausible pinchout, wedge-shaped geological models recognized in the Gulf of Mexico sedimentary sequence. Wedge-Shaped Reservoirs Reviewing the petroleum engineering literature, we found very few technical papers addressing wedge-shaped reservoir geometries and their effects on reservoir performance. Their detailed analytical results are discussed and applied to the interpretations of our model results. An overview of the conceptual models is presented as a quick orientation to emphasize some model issues. Horne and Temeng1 were the first to address the problem of recognizing, discriminating, and locating reservoir pinchouts with the Green's functions method proposed by Gringarten and Ramey2 in pressure-transient analysis. The analytical solution considered a dimensionless penetration depth of the well. Their results showed that pinchout boundaries appear similar to constant-pressure boundaries with respect to pressure-drawdown behavior and not as a perpendicular sealing boundary. Yaxley3 presented a set of simple equations for calculating the stabilized inflow performance of a well in infinite rectangular and wedge-shaped drainage systems. The basis for Yaxley's mathematical model is the application of transient linear flow (as opposed to radial flow conditions assumed for the reservoir) and the mathematical difference between a plane source and a line source in linear-flow drainage systems for various rectangular drainage shapes. The equations were derived from transient linear-flow relationships for a well located between parallel no-flow boundaries. This concept was applied to intersecting no-flow boundaries and an outer circular, no-flow, constant-pressure boundary. His approach involved a constant ßr that is interpreted as an extra pressure drop relative to a well of radius ro (radial distance to the well location), which is a result of the distortion of the radial streamline pattern. Chen and Raghavan4 developed a solution to compute pressure distributions in wedge-shaped drainage systems using Laplace transforms. Their mathematical approach overcame existing limitations in some of the previous solutions, which were mentioned earlier. By applying the inversion theorem to the Laplace transformation, they verified that the slope of the pressure profile is inversely proportional to the wedge angle of the drainage system. An examination of their results is important to the interpretation of our own simulated pressure-response issues. Generally, their model solutions showed three radial-flow periods in the absence of wellbore-storage effects. The radial-flow periods showed that:During an initial radial-flow period, neither of the impermeable boundaries registered either singly or jointly.In the second phase, one or two boundaries became evident on the pressure signature.A third radial-flow period exhibited a semi logarithmic slope proportional to p/?o, where ?o=the angle of the wedge.


2001 ◽  
Author(s):  
Thomas von Schroeter ◽  
Florian Hollaender ◽  
Alain C. Gringarten

2013 ◽  
Vol 327 ◽  
pp. 246-249
Author(s):  
Xue Mei Yu ◽  
An Ping Zhao ◽  
Xue Li

A method which can process flight test data by integrating parameter identification and non-dimensional flight dynamic model was proposed to acquire the effective aerodynamic parameters of a helicopter. First of all, a non-dimensional mathematic model considering flight dynamics was deduced for a helicopter in state of level flight, and some important parameters including aerodynamic and correctional were developed. Next, taking helicopter Z-9× for example, the least squares method was adopted to identify these parameters based actual flight test data. Lastly, the identification method was proved valid through feasibility analysis. Results show that this method is a good way to acquire aerodynamic parameters and can shorten flight test periods as well.


1980 ◽  
Vol 59 (9) ◽  
pp. 8
Author(s):  
D.E. Turnbull

2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Maysam Abedi

The presented work examines application of an Augmented Iteratively Re-weighted and Refined Least Squares method (AIRRLS) to construct a 3D magnetic susceptibility property from potential field magnetic anomalies. This algorithm replaces an lp minimization problem by a sequence of weighted linear systems in which the retrieved magnetic susceptibility model is successively converged to an optimum solution, while the regularization parameter is the stopping iteration numbers. To avoid the natural tendency of causative magnetic sources to concentrate at shallow depth, a prior depth weighting function is incorporated in the original formulation of the objective function. The speed of lp minimization problem is increased by inserting a pre-conditioner conjugate gradient method (PCCG) to solve the central system of equation in cases of large scale magnetic field data. It is assumed that there is no remanent magnetization since this study focuses on inversion of a geological structure with low magnetic susceptibility property. The method is applied on a multi-source noise-corrupted synthetic magnetic field data to demonstrate its suitability for 3D inversion, and then is applied to a real data pertaining to a geologically plausible porphyry copper unit.  The real case study located in  Semnan province of  Iran  consists  of  an arc-shaped  porphyry  andesite  covered  by  sedimentary  units  which  may  have  potential  of  mineral  occurrences, especially  porphyry copper. It is demonstrated that such structure extends down at depth, and consequently exploratory drilling is highly recommended for acquiring more pieces of information about its potential for ore-bearing mineralization.


1984 ◽  
Vol 49 (4) ◽  
pp. 805-820
Author(s):  
Ján Klas

The accuracy of the least squares method in the isotope dilution analysis is studied using two models, viz a model of a two-parameter straight line and a model of a one-parameter straight line.The equations for the direct and the inverse isotope dilution methods are transformed into linear coordinates, and the intercept and slope of the two-parameter straight line and the slope of the one-parameter straight line are evaluated and treated.


Sign in / Sign up

Export Citation Format

Share Document