scholarly journals Model Sophistication in Relation to Scales in Snowmelt Runoff Modeling

2000 ◽  
Vol 31 (4-5) ◽  
pp. 267-286 ◽  
Author(s):  
Lars Bengtsson ◽  
Vijay P. Singh

Snowmelt induced runoff from river basins is usually successfully simulated using a simple degree-day approach and conceptual rainfall-runoff models. Fluctuations within the day can not be described by such crude approaches. In the present paper, it is investigated which degree of sophistication is required in snow models and runoff models to resolve the basin runoff from basins of different character, and also how snow models and runoff models must adapt to each other. Models of different degree of sophistication are tested on basins ranging from 6,000 km2 down to less than 1 km2. It is found that for large basins it is sufficient to use a very simple runoff module and a degree day approach, but that the snow model has to be distributed related to land cover and topography. Also for small forested basins, where most of the stream flow is of groundwater origin, the degree-day method combined with a conceptual runoff model reproduces the snowmelt induced runoff well. Where overland flow takes place, a high resolution snow model is required for resolving the runoff fluctuations at the basin outlet.

1975 ◽  
Vol 6 (3) ◽  
pp. 145-154 ◽  
Author(s):  
J. MARTINEC

Following the development of rainfall-runoff models the attention of the international hydrologic program is now increasingly focused on the snowmelt-runoff. The present simple model is based on taking into account the variability of the degree-day factor, recession coefficient and snow coverage. It can be adapted to heterogenous conditions of snow accumulation and temperature in mountainous basins.


Author(s):  
Vahid Nourani ◽  
Masoud Mehrvand ◽  
Aida Hosseini Baghanam

In this study the performance of ANN with feed-forward neural network (FFNN) algorithm evaluated rainfall-runoff modeling in five gauging stations in Florida State. In addition, for investigating the performance of ANN in multi-station discharge prediction, self-organizing map (SOM) clustering tool employed in order to cluster the input data with similar patterns, due to the large amount of records in multiple stations. The main aim of study is to investigate capability and accuracy of ANN based methods in multi-station discharge prediction. In order to consider multiple stations effect on watershed outlet discharge, different combinations for precipitation and discharge data of all stations with antecedent values over the watershed have been taken into account. In this way, application of the representatives from each cluster led to significantly reduction in the numbers of the input variables so that the optimal ANN structure could be proposed. Therefore, ANN as a data-driven model was trained to predict daily runoff for the Peace River basin via recorded values from July 1995 to July 2011. Three scenarios conducted the aim of research; first scenario was an integrated ANN model trained by the data of rainfall and runoff at multiple stations. The second scenario was a sequential ANN model processed with upstream discharge records in addition to rainfall data as inputs and downstream discharge values as target. Finally, third scenario was a SOM-ANN model, in which rainfall and runoff data were clustered according the homogeneity of data via (SOM). The center of each cluster as the dominant component of each cluster was imposed to ANN in order to present an optimal rainfall-runoff model over the watershed. In all scenarios, different data sets at various time lags in both rainfall and stream flow data were applied as inputs in ANN-based model to predict stream flow. Results show that ANN model coupled with SOM is useful tools for forecasting multi-station discharge and precipitation event response in the watershed. Furthermore, the comparison of scenarios leads to select the most efficient and optimal inputs to ANN which subsequently, presents the optimal multi-station rainfall-runoff model over the watershed.


2021 ◽  
Author(s):  
Kazuki yokoo ◽  
Kei ishida ◽  
Takeyoshi nagasato ◽  
Ali Ercan

<p>In recent years, deep learning has been applied to various issues in natural science, including hydrology. These application results show its high applicability. There are some studies that performed rainfall-runoff modeling by means of a deep learning method, LSTM (Long Short-Term Memory). LSTM is a kind of RNN (Recurrent Neural Networks) that is suitable for modeling time series data with long-term dependence. These studies showed the capability of LSTM for rainfall-runoff modeling. However, there are few studies that investigate the effects of input variables on the estimation accuracy. Therefore, this study, investigated the effects of the selection of input variables on the accuracy of a rainfall-runoff model by means of LSTM. As the study watershed, this study selected a snow-dominated watershed, the Ishikari River basin, which is in the Hokkaido region of Japan. The flow discharge was obtained at a gauging station near the outlet of the river as the target data. For the input data to the model, Meteorological variables were obtained from an atmospheric reanalysis dataset, ERA5, in addition to the gridded precipitation dataset. The selected meteorological variables were air temperature, evaporation, longwave radiation, shortwave radiation, and mean sea level pressure. Then, the rainfall-runoff model was trained with several combinations of the input variables. After the training, the model accuracy was compared among the combinations. The use of meteorological variables in addition to precipitation and air temperature as input improved the model accuracy. In some cases, however, the model accuracy was worsened by using more variables as input. The results indicate the importance to select adequate variables as input for rainfall-runoff modeling by LSTM.</p>


1989 ◽  
Vol 20 (3) ◽  
pp. 167-178 ◽  
Author(s):  
B. Dey ◽  
V. K. Sharma ◽  
A. Rango

In the Snowmelt-Runoff Model (SRM), the estimate of discharge volume is based on temperature condition in the form of degree days which are used to melt the snowpack in the area of the basin covered by snow as observed from satellites. Precipitation input is used to add any rainfall runoff to the snowmelt component. When SRM was applied to the large, international Kabul River basin, initial simulations were much above the observed stream flow values. Close inspection revealed several problems in the application of SRM to the Kabul Basin that were easily corrected. Foremost among the corrections were determination of an appropriate lapse rate, substitution of a more representative mean elevation for extrapolation of temperature data, and use of an automatic streamflow updating procedure. These improvements led to a simulation for 1976 that was comparable to other simulations on large, inaccessible basins. As SRM is applied to more basins similar to the Kabul River, the determination of suitable parameters for new basin will be enhanced. Additional improvements in simulations would result from installation of climate stations at the mean elevation of basins and work to assure delivery of timely and reliable satellite snow cover data.


2020 ◽  
Author(s):  
Frederik Kratzert ◽  
Daniel Klotz ◽  
Sepp Hochreiter ◽  
Grey S. Nearing

Abstract. A deep learning rainfall-runoff model can take multiple meteorological forcing products as inputs and learn to combine them in spatially and temporally dynamic ways. This is demonstrated using Long Short Term Memory networks (LSTMs) trained over basins in the continental US using the CAMELS data set. Using multiple precipitation products (NLDAS, Maurer, DayMet) in a single LSTM significantly improved simulation accuracy relative to using only individual precipitation products. A sensitivity analysis showed that the LSTM learned to utilize different precipitation products in different ways in different basins and for simulating different parts of the hydrograph in individual basins.


Author(s):  
Spyros Giakoumakis ◽  
Dimitris Tigkas

In this work a modified version of the well-known Simple Water Balance (SWB) model, comprising here three parameters instead of one, was used. Although simple, the model was tested in large-scale river basins in east-central Greece, upstream two hydrometric stations. The available historic runoff records comprised 19 hydrologic years each, on a monthly basis. Thirteen among them were used for calibrating the model, whereas the six subsequent, for validating it. Two different efficiency criteria were used as a measure of performance of the modified model. Their values, calculated for both calibration and validation stages, were close and relatively high. Thus, keeping in mind both the size and complexity of the river basins studied, one can conclude that the modified model, despite its simplistic concept and lumped form, fits satisfactorily the historic runoff series.


Sign in / Sign up

Export Citation Format

Share Document